Spaces:
Runtime error
Runtime error
anas-awadalla
commited on
Commit
·
e548f8b
1
Parent(s):
f569b1b
added stuff
Browse files- app.py +47 -11
- images/4645808729_2dfc59b6a5_z.jpg +0 -0
- images/5944609705_4664531909_z.jpg +0 -0
- images/mhJ2yWNwMtNcmijZqVEDDW-320-80.jpg +0 -0
app.py
CHANGED
@@ -7,20 +7,22 @@ import os
|
|
7 |
login(token=os.environ["HUGGINGFACE_TOKEN"])
|
8 |
|
9 |
demo_imgs = [
|
10 |
-
["images/chinchilla_web-1024x683.jpg", "images/shiba-inu-dog-in-the-snow.jpg"],
|
11 |
-
["images/900.jpeg", "images/hummus.jpg"],
|
12 |
-
["images/COCO_train2014_000000572279.jpg", "images/COCO_train2014_000000194806.jpg"],
|
13 |
[
|
14 |
"images/bcee7a-20190225-a-london-underground-sign.jpg",
|
15 |
"images/istockphoto-622434332-1024x1024.jpg",
|
16 |
],
|
17 |
-
["images/dogs.jpeg", "images/pandas.jpg"],
|
18 |
["images/11887_pesto-pasta_Rita-1x1-1-501c953b29074ab193e2b5ad36e64648.jpg", "images/hummus.jpg"],
|
19 |
]
|
20 |
demo_texts = [
|
21 |
[
|
22 |
"Output: This is a chinchilla. They are mainly found in Chile.",
|
23 |
"Output: This is a shiba. They are very popular in Japan.",
|
|
|
|
|
24 |
],
|
25 |
[
|
26 |
"Output: a pink flamingo standing in a body of water.",
|
@@ -31,9 +33,11 @@ demo_texts = [
|
|
31 |
[
|
32 |
"Question: Describe the scene. Answer: A white airplane being repaired on the runway. 'Cargo' is written on it in red.",
|
33 |
"Question: What is the man trying to catch? Answer: The man is catching a white kite that his friend is flying. The two men are on a beach.",
|
|
|
|
|
34 |
],
|
35 |
['Output: "Underground"', 'Output: "Congress Ave"'],
|
36 |
-
["Output: 2 dogs", "Output: 3 pandas"],
|
37 |
]
|
38 |
|
39 |
# cd to open_flamingo dir and pip install .
|
@@ -50,12 +54,12 @@ with open("bad_words.txt", "r") as f:
|
|
50 |
model, image_processor, tokenizer = create_model_and_transforms(
|
51 |
clip_vision_encoder_pretrained="openai",
|
52 |
clip_vision_encoder_path="ViT-L-14",
|
53 |
-
lang_encoder_path="togethercomputer/RedPajama-INCITE-
|
54 |
-
tokenizer_path="togethercomputer/RedPajama-INCITE-
|
55 |
cross_attn_every_n_layers=2,
|
56 |
)
|
57 |
|
58 |
-
checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-4B-vitl-rpj3b", "checkpoint.pt")
|
59 |
model.load_state_dict(torch.load(checkpoint_path), strict=False)
|
60 |
|
61 |
model.eval()
|
@@ -97,6 +101,28 @@ def generate(
|
|
97 |
if example_two_text is None
|
98 |
else f"Output: {example_two_text}"
|
99 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
if (
|
102 |
example_one_image is None
|
@@ -107,6 +133,10 @@ def generate(
|
|
107 |
raise gr.Error("Please fill in all the fields (image and text).")
|
108 |
|
109 |
demo_plus_text = f"<image>{example_one_text}<|endofchunk|><image>{example_two_text}<|endofchunk|>"
|
|
|
|
|
|
|
|
|
110 |
demo_plus_text += (
|
111 |
"<image>Output:" if idx != 2 else f"<image>Question: {text.strip()} Answer:"
|
112 |
)
|
@@ -117,7 +147,14 @@ def generate(
|
|
117 |
input_ids = lang_x["input_ids"]
|
118 |
attention_mask = lang_x["attention_mask"]
|
119 |
|
120 |
-
vision_x = [image_processor(example_one_image).unsqueeze(0), image_processor(example_two_image).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
vision_x = torch.cat(vision_x, dim=0)
|
122 |
vision_x = vision_x.unsqueeze(1).unsqueeze(0)
|
123 |
print(vision_x.shape)
|
@@ -165,12 +202,11 @@ def generate(
|
|
165 |
|
166 |
|
167 |
with gr.Blocks() as demo:
|
168 |
-
# As a consequence, you should treat this model as a research prototype and not as a production-ready model. Before using this demo please familiarize yourself with our [model card](https://github.com/mlfoundations/open_flamingo/blob/main/MODEL_CARD.md) and [terms and conditions](https://github.com/mlfoundations/open_flamingo/blob/main/TERMS_AND_CONDITIONS.md)
|
169 |
gr.Markdown(
|
170 |
"""
|
171 |
# 🦩 OpenFlamingo Demo
|
172 |
|
173 |
-
Blog posts: #1 [An open-source framework for training vision-language models with in-context learning](https://laion.ai/blog/open-flamingo/) // #2 [OpenFlamingo v2: New Models and Enhanced Training Setup]()
|
174 |
GitHub: [open_flamingo](https://github.com/mlfoundations/open_flamingo)
|
175 |
|
176 |
In this demo we implement an interactive interface that showcases the in-context learning capabilities of the OpenFlamingo-4B model, a large multimodal model trained on top of
|
|
|
7 |
login(token=os.environ["HUGGINGFACE_TOKEN"])
|
8 |
|
9 |
demo_imgs = [
|
10 |
+
["images/chinchilla_web-1024x683.jpg", "images/shiba-inu-dog-in-the-snow.jpg", "images/900.jpeg", "images/dogs.jpeg"],
|
11 |
+
["images/900.jpeg", "images/hummus.jpg", "images/london-underground-sign.jpg", "images/COCO_train2014_000000194806.jpg"],
|
12 |
+
["images/COCO_train2014_000000572279.jpg", "images/COCO_train2014_000000194806.jpg", "images/istockphoto-622434332-1024x1024.jpg", "images/11887_pesto-pasta_Rita-1x1-1-501c953b29074ab193e2b5ad36e64648.jpg"],
|
13 |
[
|
14 |
"images/bcee7a-20190225-a-london-underground-sign.jpg",
|
15 |
"images/istockphoto-622434332-1024x1024.jpg",
|
16 |
],
|
17 |
+
["images/dogs.jpeg", "images/pandas.jpg", "images/900.jpeg", "images/mhJ2yWNwMtNcmijZqVEDDW-320-80.jpg"],
|
18 |
["images/11887_pesto-pasta_Rita-1x1-1-501c953b29074ab193e2b5ad36e64648.jpg", "images/hummus.jpg"],
|
19 |
]
|
20 |
demo_texts = [
|
21 |
[
|
22 |
"Output: This is a chinchilla. They are mainly found in Chile.",
|
23 |
"Output: This is a shiba. They are very popular in Japan.",
|
24 |
+
"Output: This is a flamingo. They are found in South America.",
|
25 |
+
"Output: These are labrador retrievers. They are found in the UK.",
|
26 |
],
|
27 |
[
|
28 |
"Output: a pink flamingo standing in a body of water.",
|
|
|
33 |
[
|
34 |
"Question: Describe the scene. Answer: A white airplane being repaired on the runway. 'Cargo' is written on it in red.",
|
35 |
"Question: What is the man trying to catch? Answer: The man is catching a white kite that his friend is flying. The two men are on a beach.",
|
36 |
+
"Question: What does the sign say? Answer: Congress Ave",
|
37 |
+
"Question: What is this dish? Answer: This is pesto pasta topped with cheese and basil.",
|
38 |
],
|
39 |
['Output: "Underground"', 'Output: "Congress Ave"'],
|
40 |
+
["Output: 2 dogs", "Output: 3 pandas", "Output: 1 flamingo", "Output: 5 fingers"],
|
41 |
]
|
42 |
|
43 |
# cd to open_flamingo dir and pip install .
|
|
|
54 |
model, image_processor, tokenizer = create_model_and_transforms(
|
55 |
clip_vision_encoder_pretrained="openai",
|
56 |
clip_vision_encoder_path="ViT-L-14",
|
57 |
+
lang_encoder_path="togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
|
58 |
+
tokenizer_path="togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
|
59 |
cross_attn_every_n_layers=2,
|
60 |
)
|
61 |
|
62 |
+
checkpoint_path = hf_hub_download("openflamingo/OpenFlamingo-4B-vitl-rpj3b-langinstruct", "checkpoint.pt")
|
63 |
model.load_state_dict(torch.load(checkpoint_path), strict=False)
|
64 |
|
65 |
model.eval()
|
|
|
101 |
if example_two_text is None
|
102 |
else f"Output: {example_two_text}"
|
103 |
)
|
104 |
+
|
105 |
+
if idx != -1:
|
106 |
+
example_three_image = (
|
107 |
+
Image.open(demo_imgs[idx][2])
|
108 |
+
if example_three_image is None
|
109 |
+
else example_three_image
|
110 |
+
)
|
111 |
+
example_three_text = (
|
112 |
+
demo_texts[idx][2]
|
113 |
+
if example_three_text is None
|
114 |
+
else f"Output: {example_three_text}"
|
115 |
+
)
|
116 |
+
example_four_image = (
|
117 |
+
Image.open(demo_imgs[idx][3])
|
118 |
+
if example_four_image is None
|
119 |
+
else example_four_image
|
120 |
+
)
|
121 |
+
example_four_text = (
|
122 |
+
demo_texts[idx][3]
|
123 |
+
if example_four_text is None
|
124 |
+
else f"Output: {example_four_text}"
|
125 |
+
)
|
126 |
|
127 |
if (
|
128 |
example_one_image is None
|
|
|
133 |
raise gr.Error("Please fill in all the fields (image and text).")
|
134 |
|
135 |
demo_plus_text = f"<image>{example_one_text}<|endofchunk|><image>{example_two_text}<|endofchunk|>"
|
136 |
+
|
137 |
+
if idx != -1:
|
138 |
+
demo_plus_text += f"<image>{example_three_text}<|endofchunk|><image>{example_four_text}<|endofchunk|>"
|
139 |
+
|
140 |
demo_plus_text += (
|
141 |
"<image>Output:" if idx != 2 else f"<image>Question: {text.strip()} Answer:"
|
142 |
)
|
|
|
147 |
input_ids = lang_x["input_ids"]
|
148 |
attention_mask = lang_x["attention_mask"]
|
149 |
|
150 |
+
vision_x = [image_processor(example_one_image).unsqueeze(0), image_processor(example_two_image).unsqueeze(0)]
|
151 |
+
|
152 |
+
if idx != -1:
|
153 |
+
vision_x.append(image_processor(example_three_image).unsqueeze(0))
|
154 |
+
vision_x.append(image_processor(example_four_image).unsqueeze(0))
|
155 |
+
|
156 |
+
vision_x.append(image_processor(image).unsqueeze(0))
|
157 |
+
|
158 |
vision_x = torch.cat(vision_x, dim=0)
|
159 |
vision_x = vision_x.unsqueeze(1).unsqueeze(0)
|
160 |
print(vision_x.shape)
|
|
|
202 |
|
203 |
|
204 |
with gr.Blocks() as demo:
|
|
|
205 |
gr.Markdown(
|
206 |
"""
|
207 |
# 🦩 OpenFlamingo Demo
|
208 |
|
209 |
+
Blog posts: #1 [An open-source framework for training vision-language models with in-context learning](https://laion.ai/blog/open-flamingo/) // #2 [OpenFlamingo v2: New Models and Enhanced Training Setup]()
|
210 |
GitHub: [open_flamingo](https://github.com/mlfoundations/open_flamingo)
|
211 |
|
212 |
In this demo we implement an interactive interface that showcases the in-context learning capabilities of the OpenFlamingo-4B model, a large multimodal model trained on top of
|
images/4645808729_2dfc59b6a5_z.jpg
ADDED
images/5944609705_4664531909_z.jpg
ADDED
images/mhJ2yWNwMtNcmijZqVEDDW-320-80.jpg
ADDED