Upload 9 files
Browse files- .gitattributes +1 -0
- NanumGothic-Regular (1).ttf +3 -0
- concept_map_generator.py +244 -0
- graph_generator_utils.py +86 -0
- packages (6).txt +1 -0
- process_flow_generator.py +207 -0
- radial_diagram_generator.py +127 -0
- sample_data.py +478 -0
- synoptic_chart_generator.py +156 -0
- wbs_diagram_generator.py +286 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
NanumGothic-Regular[[:space:]](1).ttf filter=lfs diff=lfs merge=lfs -text
|
NanumGothic-Regular (1).ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf050025dcce823de644153981ff8b171d5b78d7d0ddd6e3c9f39e814fad3564
|
3 |
+
size 2053328
|
concept_map_generator.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import graphviz
|
2 |
+
import json
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
+
import os
|
5 |
+
from graph_generator_utils import add_nodes_and_edges
|
6 |
+
|
7 |
+
def generate_concept_map(json_input: str, output_format: str) -> str:
|
8 |
+
"""
|
9 |
+
Generates a concept map from JSON input.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
json_input (str): A JSON string describing the concept map structure.
|
13 |
+
It must follow the Expected JSON Format Example below.
|
14 |
+
|
15 |
+
Expected JSON Format Example:
|
16 |
+
{
|
17 |
+
"central_node": "Artificial Intelligence (AI)",
|
18 |
+
"nodes": [
|
19 |
+
{
|
20 |
+
"id": "ml_fundamental",
|
21 |
+
"label": "Machine Learning",
|
22 |
+
"relationship": "is essential for",
|
23 |
+
"subnodes": [
|
24 |
+
{
|
25 |
+
"id": "dl_branch",
|
26 |
+
"label": "Deep Learning",
|
27 |
+
"relationship": "for example",
|
28 |
+
"subnodes": [
|
29 |
+
{
|
30 |
+
"id": "cnn_example",
|
31 |
+
"label": "CNNs",
|
32 |
+
"relationship": "for example"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"id": "rnn_example",
|
36 |
+
"label": "RNNs",
|
37 |
+
"relationship": "for example"
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"id": "rl_branch",
|
43 |
+
"label": "Reinforcement Learning",
|
44 |
+
"relationship": "for example",
|
45 |
+
"subnodes": [
|
46 |
+
{
|
47 |
+
"id": "qlearning_example",
|
48 |
+
"label": "Q-Learning",
|
49 |
+
"relationship": "example"
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": "pg_example",
|
53 |
+
"label": "Policy Gradients",
|
54 |
+
"relationship": "example"
|
55 |
+
}
|
56 |
+
]
|
57 |
+
}
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"id": "ai_types",
|
62 |
+
"label": "Types",
|
63 |
+
"relationship": "formed by",
|
64 |
+
"subnodes": [
|
65 |
+
{
|
66 |
+
"id": "agi_type",
|
67 |
+
"label": "AGI",
|
68 |
+
"relationship": "this is",
|
69 |
+
"subnodes": [
|
70 |
+
{
|
71 |
+
"id": "strong_ai",
|
72 |
+
"label": "Strong AI",
|
73 |
+
"relationship": "provoked by",
|
74 |
+
"subnodes": [
|
75 |
+
{
|
76 |
+
"id": "human_intel",
|
77 |
+
"label": "Human-level Intel.",
|
78 |
+
"relationship": "of"
|
79 |
+
}
|
80 |
+
]
|
81 |
+
}
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"id": "ani_type",
|
86 |
+
"label": "ANI",
|
87 |
+
"relationship": "this is",
|
88 |
+
"subnodes": [
|
89 |
+
{
|
90 |
+
"id": "weak_ai",
|
91 |
+
"label": "Weak AI",
|
92 |
+
"relationship": "provoked by",
|
93 |
+
"subnodes": [
|
94 |
+
{
|
95 |
+
"id": "narrow_tasks",
|
96 |
+
"label": "Narrow Tasks",
|
97 |
+
"relationship": "of"
|
98 |
+
}
|
99 |
+
]
|
100 |
+
}
|
101 |
+
]
|
102 |
+
}
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"id": "ai_capabilities",
|
107 |
+
"label": "Capabilities",
|
108 |
+
"relationship": "change",
|
109 |
+
"subnodes": [
|
110 |
+
{
|
111 |
+
"id": "data_proc",
|
112 |
+
"label": "Data Processing",
|
113 |
+
"relationship": "can",
|
114 |
+
"subnodes": [
|
115 |
+
{
|
116 |
+
"id": "big_data",
|
117 |
+
"label": "Big Data",
|
118 |
+
"relationship": "as",
|
119 |
+
"subnodes": [
|
120 |
+
{
|
121 |
+
"id": "analysis_example",
|
122 |
+
"label": "Data Analysis",
|
123 |
+
"relationship": "example"
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"id": "prediction_example",
|
127 |
+
"label": "Prediction",
|
128 |
+
"relationship": "example"
|
129 |
+
}
|
130 |
+
]
|
131 |
+
}
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"id": "decision_making",
|
136 |
+
"label": "Decision Making",
|
137 |
+
"relationship": "can be",
|
138 |
+
"subnodes": [
|
139 |
+
{
|
140 |
+
"id": "automation",
|
141 |
+
"label": "Automation",
|
142 |
+
"relationship": "as",
|
143 |
+
"subnodes": [
|
144 |
+
{
|
145 |
+
"id": "robotics_example",
|
146 |
+
"label": "Robotics",
|
147 |
+
"relationship": "Example"},
|
148 |
+
{
|
149 |
+
"id": "autonomous_example",
|
150 |
+
"label": "Autonomous Vehicles",
|
151 |
+
"relationship": "of one"
|
152 |
+
}
|
153 |
+
]
|
154 |
+
}
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"id": "problem_solving",
|
159 |
+
"label": "Problem Solving",
|
160 |
+
"relationship": "can",
|
161 |
+
"subnodes": [
|
162 |
+
{
|
163 |
+
"id": "optimization",
|
164 |
+
"label": "Optimization",
|
165 |
+
"relationship": "as is",
|
166 |
+
"subnodes": [
|
167 |
+
{
|
168 |
+
"id": "algorithms_example",
|
169 |
+
"label": "Algorithms",
|
170 |
+
"relationship": "for example"
|
171 |
+
}
|
172 |
+
]
|
173 |
+
}
|
174 |
+
]
|
175 |
+
}
|
176 |
+
]
|
177 |
+
}
|
178 |
+
]
|
179 |
+
}
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
str: The filepath to the generated PNG image file.
|
183 |
+
"""
|
184 |
+
try:
|
185 |
+
if not json_input.strip():
|
186 |
+
return "Error: Empty input"
|
187 |
+
|
188 |
+
data = json.loads(json_input)
|
189 |
+
|
190 |
+
if 'central_node' not in data or 'nodes' not in data:
|
191 |
+
raise ValueError("Missing required fields: central_node or nodes")
|
192 |
+
|
193 |
+
# ํ๊ธ ํฐํธ ์ค์
|
194 |
+
# ํ๊ฒฝ ๋ณ์์์ ํฐํธ ๊ฒฝ๋ก ๊ฐ์ ธ์ค๊ธฐ
|
195 |
+
font_path = os.environ.get('KOREAN_FONT_PATH', '')
|
196 |
+
|
197 |
+
# Graphviz๋ ์์คํ
ํฐํธ๋ฅผ ์ฌ์ฉํ๋ฏ๋ก ํฐํธ ์ด๋ฆ์ผ๋ก ์ง์
|
198 |
+
# NanumGothic์ด ์์คํ
์ ์ค์น๋์ด ์์ด์ผ ํจ
|
199 |
+
korean_font = 'NanumGothic'
|
200 |
+
|
201 |
+
dot = graphviz.Digraph(
|
202 |
+
name='ConceptMap',
|
203 |
+
format='png',
|
204 |
+
graph_attr={
|
205 |
+
'rankdir': 'TB', # Top-to-Bottom layout (vertical hierarchy)
|
206 |
+
'splines': 'ortho', # Straight lines
|
207 |
+
'bgcolor': 'white', # White background
|
208 |
+
'pad': '0.5', # Padding around the graph
|
209 |
+
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํฐํธ ์ค์
|
210 |
+
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
|
211 |
+
},
|
212 |
+
node_attr={
|
213 |
+
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
|
214 |
+
},
|
215 |
+
edge_attr={
|
216 |
+
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
|
217 |
+
}
|
218 |
+
)
|
219 |
+
|
220 |
+
base_color = '#19191a' # Hardcoded base color
|
221 |
+
|
222 |
+
# Central node styling (rounded box, dark color)
|
223 |
+
dot.node(
|
224 |
+
'central',
|
225 |
+
data['central_node'],
|
226 |
+
shape='box', # Rectangular shape
|
227 |
+
style='filled,rounded', # Filled and rounded corners
|
228 |
+
fillcolor=base_color, # Darkest color
|
229 |
+
fontcolor='white', # White text for dark background
|
230 |
+
fontsize='16', # Larger font for central node
|
231 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ๋ช
์์ ์ง์
|
232 |
+
)
|
233 |
+
|
234 |
+
# Add child nodes and edges recursively starting from depth 1
|
235 |
+
add_nodes_and_edges(dot, 'central', data.get('nodes', []), current_depth=1, base_color=base_color)
|
236 |
+
|
237 |
+
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
|
238 |
+
dot.render(tmp.name, format=output_format, cleanup=True)
|
239 |
+
return f"{tmp.name}.{output_format}"
|
240 |
+
|
241 |
+
except json.JSONDecodeError:
|
242 |
+
return "Error: Invalid JSON format"
|
243 |
+
except Exception as e:
|
244 |
+
return f"Error: {str(e)}"
|
graph_generator_utils.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import graphviz
|
2 |
+
import os
|
3 |
+
|
4 |
+
def add_nodes_and_edges(dot: graphviz.Digraph, parent_id: str, nodes_list: list, current_depth: int, base_color: str):
|
5 |
+
"""
|
6 |
+
Recursively adds nodes and edges to a Graphviz Digraph object,
|
7 |
+
applying a color gradient and consistent styling.
|
8 |
+
Args:
|
9 |
+
dot (graphviz.Digraph): The Graphviz Digraph object to modify.
|
10 |
+
parent_id (str): The ID of the parent node for the current set of nodes.
|
11 |
+
nodes_list (list): A list of dictionaries, each representing a node
|
12 |
+
with 'id', 'label', 'relationship', and optional 'subnodes'.
|
13 |
+
current_depth (int): The current depth in the graph hierarchy (0 for central node).
|
14 |
+
base_color (str): The hexadecimal base color for the deepest nodes.
|
15 |
+
"""
|
16 |
+
# ํ๊ธ ํฐํธ ์ค์
|
17 |
+
korean_font = 'NanumGothic'
|
18 |
+
|
19 |
+
# Calculate color for current depth, making it lighter
|
20 |
+
# This factor determines how quickly the color lightens per level.
|
21 |
+
lightening_factor = 0.12
|
22 |
+
|
23 |
+
# Convert base_color hex to RGB for interpolation
|
24 |
+
# Ensure base_color is a valid hex string before converting
|
25 |
+
if not isinstance(base_color, str) or not base_color.startswith('#') or len(base_color) != 7:
|
26 |
+
base_color = '#19191a' # Fallback to default dark if invalid
|
27 |
+
base_r = int(base_color[1:3], 16)
|
28 |
+
base_g = int(base_color[3:5], 16)
|
29 |
+
base_b = int(base_color[5:7], 16)
|
30 |
+
|
31 |
+
# Calculate current node color by blending towards white
|
32 |
+
current_r = base_r + int((255 - base_r) * current_depth * lightening_factor)
|
33 |
+
current_g = base_g + int((255 - base_g) * current_depth * lightening_factor)
|
34 |
+
current_b = base_b + int((255 - base_b) * current_depth * lightening_factor)
|
35 |
+
|
36 |
+
# Clamp values to 255 to stay within valid RGB range
|
37 |
+
current_r = min(255, current_r)
|
38 |
+
current_g = min(255, current_g)
|
39 |
+
current_b = min(255, current_b)
|
40 |
+
|
41 |
+
node_fill_color = f'#{current_r:02x}{current_g:02x}{current_b:02x}'
|
42 |
+
|
43 |
+
# Font color: white for dark nodes, black for very light nodes for readability
|
44 |
+
font_color = 'white' if current_depth * lightening_factor < 0.6 else 'black'
|
45 |
+
|
46 |
+
# Edge colors and font sizes
|
47 |
+
edge_color = '#4a4a4a' # Dark gray for lines
|
48 |
+
# Font size adjusts based on depth, ensuring a minimum size
|
49 |
+
font_size = max(9, 14 - (current_depth * 2))
|
50 |
+
edge_font_size = max(7, 10 - (current_depth * 1))
|
51 |
+
|
52 |
+
for node in nodes_list:
|
53 |
+
node_id = node.get('id')
|
54 |
+
label = node.get('label')
|
55 |
+
relationship = node.get('relationship')
|
56 |
+
|
57 |
+
# Basic validation for node data
|
58 |
+
if not all([node_id, label, relationship]):
|
59 |
+
raise ValueError(f"Invalid node: {node}")
|
60 |
+
|
61 |
+
# Add node with specified style and Korean font
|
62 |
+
dot.node(
|
63 |
+
node_id,
|
64 |
+
label,
|
65 |
+
shape='box', # All nodes are rectangular
|
66 |
+
style='filled,rounded', # Filled and rounded corners
|
67 |
+
fillcolor=node_fill_color,
|
68 |
+
fontcolor=font_color,
|
69 |
+
fontsize=str(font_size),
|
70 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
71 |
+
)
|
72 |
+
|
73 |
+
# Add edge from parent to current node with Korean font
|
74 |
+
dot.edge(
|
75 |
+
parent_id,
|
76 |
+
node_id,
|
77 |
+
label=relationship,
|
78 |
+
color=edge_color,
|
79 |
+
fontcolor=edge_color, # Edge label color also dark gray
|
80 |
+
fontsize=str(edge_font_size),
|
81 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
82 |
+
)
|
83 |
+
|
84 |
+
# Recursively call for subnodes
|
85 |
+
if 'subnodes' in node:
|
86 |
+
add_nodes_and_edges(dot, node_id, node['subnodes'], current_depth + 1, base_color)
|
packages (6).txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
graphviz
|
process_flow_generator.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import graphviz
|
2 |
+
import json
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
+
import os
|
5 |
+
|
6 |
+
def generate_process_flow_diagram(json_input: str, output_format: str) -> str:
|
7 |
+
"""
|
8 |
+
Generates a Process Flow Diagram (Flowchart) from JSON input.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
json_input (str): A JSON string describing the process flow structure.
|
12 |
+
It must follow the Expected JSON Format Example below.
|
13 |
+
|
14 |
+
Expected JSON Format Example:
|
15 |
+
{
|
16 |
+
"start_node": "Start Inference Request",
|
17 |
+
"nodes": [
|
18 |
+
{
|
19 |
+
"id": "user_input",
|
20 |
+
"label": "Receive User Input (Data)",
|
21 |
+
"type": "io"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"id": "preprocess_data",
|
25 |
+
"label": "Preprocess Data",
|
26 |
+
"type": "process"
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"id": "validate_data",
|
30 |
+
"label": "Validate Data Format/Type",
|
31 |
+
"type": "decision"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": "data_valid_yes",
|
35 |
+
"label": "Data Valid?",
|
36 |
+
"type": "decision"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"id": "load_model",
|
40 |
+
"label": "Load AI Model (if not cached)",
|
41 |
+
"type": "process"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"id": "run_inference",
|
45 |
+
"label": "Run AI Model Inference",
|
46 |
+
"type": "process"
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"id": "postprocess_output",
|
50 |
+
"label": "Postprocess Model Output",
|
51 |
+
"type": "process"
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"id": "send_response",
|
55 |
+
"label": "Send Response to User",
|
56 |
+
"type": "io"
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"id": "log_error",
|
60 |
+
"label": "Log Error & Notify User",
|
61 |
+
"type": "process"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"id": "end_inference_process",
|
65 |
+
"label": "End Inference Process",
|
66 |
+
"type": "end"
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"connections": [
|
70 |
+
{"from": "start_node", "to": "user_input", "label": "Request"},
|
71 |
+
{"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
|
72 |
+
{"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
|
73 |
+
{"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
|
74 |
+
{"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
|
75 |
+
{"from": "data_valid_yes", "to": "log_error", "label": "No"},
|
76 |
+
{"from": "load_model", "to": "run_inference", "label": "Model Ready"},
|
77 |
+
{"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
|
78 |
+
{"from": "postprocess_output", "to": "send_response", "label": "Ready"},
|
79 |
+
{"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
|
80 |
+
{"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
|
81 |
+
]
|
82 |
+
}
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
str: The filepath to the generated PNG image file.
|
86 |
+
"""
|
87 |
+
try:
|
88 |
+
if not json_input.strip():
|
89 |
+
return "Error: Empty input"
|
90 |
+
|
91 |
+
data = json.loads(json_input)
|
92 |
+
|
93 |
+
# Validate required top-level keys for a flowchart
|
94 |
+
if 'start_node' not in data or 'nodes' not in data or 'connections' not in data:
|
95 |
+
raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'")
|
96 |
+
|
97 |
+
# Define specific node shapes for flowchart types
|
98 |
+
node_shapes = {
|
99 |
+
"process": "box", # Rectangle for processes
|
100 |
+
"decision": "diamond", # Diamond for decisions
|
101 |
+
"start": "oval", # Oval for start
|
102 |
+
"end": "oval", # Oval for end
|
103 |
+
"io": "parallelogram", # Input/Output
|
104 |
+
"document": "note", # Document symbol
|
105 |
+
"default": "box" # Fallback
|
106 |
+
}
|
107 |
+
|
108 |
+
# ํ๊ธ ํฐํธ ์ค์
|
109 |
+
# GDFONTPATH๊ฐ ์ค์ ๋์ด ์์ผ๋ฉด ํฐํธ ํ์ผ๋ช
(ํ์ฅ์ ์ ์ธ) ์ฌ์ฉ
|
110 |
+
korean_font = 'NanumGothic-Regular'
|
111 |
+
|
112 |
+
dot = graphviz.Digraph(
|
113 |
+
name='ProcessFlowDiagram',
|
114 |
+
format='png',
|
115 |
+
graph_attr={
|
116 |
+
'rankdir': 'TB', # Top-to-Bottom flow is common for flowcharts
|
117 |
+
'splines': 'ortho', # Straight lines with 90-degree bends
|
118 |
+
'bgcolor': 'white', # White background
|
119 |
+
'pad': '0.5', # Padding around the graph
|
120 |
+
'nodesep': '0.6', # Spacing between nodes on same rank
|
121 |
+
'ranksep': '0.8', # Spacing between ranks
|
122 |
+
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํ๊ธ ํฐํธ
|
123 |
+
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
|
124 |
+
},
|
125 |
+
node_attr={
|
126 |
+
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
|
127 |
+
},
|
128 |
+
edge_attr={
|
129 |
+
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
|
130 |
+
}
|
131 |
+
)
|
132 |
+
|
133 |
+
base_color = '#19191a' # Hardcoded base color
|
134 |
+
|
135 |
+
fill_color_for_nodes = base_color
|
136 |
+
font_color_for_nodes = 'white' if base_color == '#19191a' or base_color.lower() in ['#000000', '#19191a'] else 'black'
|
137 |
+
|
138 |
+
# Store all nodes by ID for easy lookup
|
139 |
+
all_defined_nodes = {node['id']: node for node in data['nodes']}
|
140 |
+
|
141 |
+
# Add start node explicitly
|
142 |
+
start_node_id = data['start_node']
|
143 |
+
dot.node(
|
144 |
+
start_node_id,
|
145 |
+
start_node_id, # Label is typically the ID itself for start/end
|
146 |
+
shape=node_shapes['start'],
|
147 |
+
style='filled,rounded',
|
148 |
+
fillcolor='#2196F3', # A distinct blue for Start
|
149 |
+
fontcolor='white',
|
150 |
+
fontsize='14',
|
151 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
152 |
+
)
|
153 |
+
|
154 |
+
# Add all other nodes (process, decision, etc.)
|
155 |
+
for node_id, node_info in all_defined_nodes.items():
|
156 |
+
if node_id == start_node_id: # Skip if it's the start node, already added
|
157 |
+
continue
|
158 |
+
|
159 |
+
node_type = node_info.get("type", "default")
|
160 |
+
shape = node_shapes.get(node_type, "box")
|
161 |
+
|
162 |
+
node_label = node_info['label']
|
163 |
+
|
164 |
+
# Use distinct color for end node if it exists
|
165 |
+
if node_type == 'end':
|
166 |
+
dot.node(
|
167 |
+
node_id,
|
168 |
+
node_label,
|
169 |
+
shape=shape,
|
170 |
+
style='filled,rounded',
|
171 |
+
fillcolor='#F44336', # A distinct red for End
|
172 |
+
fontcolor='white',
|
173 |
+
fontsize='14',
|
174 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
175 |
+
)
|
176 |
+
else: # Regular process, decision, etc. nodes use the selected base color
|
177 |
+
dot.node(
|
178 |
+
node_id,
|
179 |
+
node_label,
|
180 |
+
shape=shape,
|
181 |
+
style='filled,rounded',
|
182 |
+
fillcolor=fill_color_for_nodes,
|
183 |
+
fontcolor=font_color_for_nodes,
|
184 |
+
fontsize='14',
|
185 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
186 |
+
)
|
187 |
+
|
188 |
+
# Add connections (edges)
|
189 |
+
for connection in data['connections']:
|
190 |
+
dot.edge(
|
191 |
+
connection['from'],
|
192 |
+
connection['to'],
|
193 |
+
label=connection.get('label', ''),
|
194 |
+
color='#4a4a4a', # Dark gray for lines
|
195 |
+
fontcolor='#4a4a4a',
|
196 |
+
fontsize='10',
|
197 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
198 |
+
)
|
199 |
+
|
200 |
+
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
|
201 |
+
dot.render(tmp.name, format=output_format, cleanup=True)
|
202 |
+
return f"{tmp.name}.{output_format}"
|
203 |
+
|
204 |
+
except json.JSONDecodeError:
|
205 |
+
return "Error: Invalid JSON format"
|
206 |
+
except Exception as e:
|
207 |
+
return f"Error: {str(e)}"
|
radial_diagram_generator.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import graphviz
|
2 |
+
import json
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
+
import os
|
5 |
+
from graph_generator_utils import add_nodes_and_edges
|
6 |
+
|
7 |
+
def generate_radial_diagram(json_input: str, output_format: str) -> str:
|
8 |
+
"""
|
9 |
+
Generates a radial (center-expanded) diagram from JSON input.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
json_input (str): A JSON string describing the radial diagram structure.
|
13 |
+
It must follow the Expected JSON Format Example below.
|
14 |
+
|
15 |
+
Expected JSON Format Example:
|
16 |
+
{
|
17 |
+
"central_node": "AI Core Concepts & Domains",
|
18 |
+
"nodes": [
|
19 |
+
{
|
20 |
+
"id": "foundational_ml",
|
21 |
+
"label": "Foundational ML",
|
22 |
+
"relationship": "builds on",
|
23 |
+
"subnodes": [
|
24 |
+
{"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
|
25 |
+
{"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"id": "dl_architectures",
|
30 |
+
"label": "Deep Learning Arch.",
|
31 |
+
"relationship": "evolved from",
|
32 |
+
"subnodes": [
|
33 |
+
{"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
|
34 |
+
{"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"id": "major_applications",
|
39 |
+
"label": "Major AI Applications",
|
40 |
+
"relationship": "applied in",
|
41 |
+
"subnodes": [
|
42 |
+
{"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
|
43 |
+
{"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"id": "ethical_concerns",
|
48 |
+
"label": "Ethical AI Concerns",
|
49 |
+
"relationship": "addresses",
|
50 |
+
"subnodes": [
|
51 |
+
{"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
|
52 |
+
{"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"id": "future_trends",
|
57 |
+
"label": "Future AI Trends",
|
58 |
+
"relationship": "looking at",
|
59 |
+
"subnodes": [
|
60 |
+
{"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
|
61 |
+
{"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
|
62 |
+
]
|
63 |
+
}
|
64 |
+
]
|
65 |
+
}
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
str: The filepath to the generated PNG image file.
|
69 |
+
"""
|
70 |
+
try:
|
71 |
+
if not json_input.strip():
|
72 |
+
return "Error: Empty input"
|
73 |
+
|
74 |
+
data = json.loads(json_input)
|
75 |
+
|
76 |
+
if 'central_node' not in data or 'nodes' not in data:
|
77 |
+
raise ValueError("Missing required fields: central_node or nodes")
|
78 |
+
|
79 |
+
# ํ๊ธ ํฐํธ ์ค์
|
80 |
+
# GDFONTPATH๊ฐ ์ค์ ๋์ด ์์ผ๋ฉด ํฐํธ ํ์ผ๋ช
(ํ์ฅ์ ์ ์ธ) ์ฌ์ฉ
|
81 |
+
korean_font = 'NanumGothic-Regular'
|
82 |
+
|
83 |
+
dot = graphviz.Digraph(
|
84 |
+
name='RadialDiagram',
|
85 |
+
format='png',
|
86 |
+
engine='neato', # Use 'neato' or 'fdp' for radial/force-directed layout
|
87 |
+
graph_attr={
|
88 |
+
'overlap': 'false', # Prevent node overlap
|
89 |
+
'splines': 'true', # Smooth splines for edges
|
90 |
+
'bgcolor': 'white', # White background
|
91 |
+
'pad': '0.5', # Padding around the graph
|
92 |
+
'layout': 'neato', # Explicitly set layout engine for consistency
|
93 |
+
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํ๊ธ ํฐํธ
|
94 |
+
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
|
95 |
+
},
|
96 |
+
node_attr={
|
97 |
+
'fixedsize': 'false', # Allow nodes to resize based on content
|
98 |
+
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
|
99 |
+
},
|
100 |
+
edge_attr={
|
101 |
+
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
|
102 |
+
}
|
103 |
+
)
|
104 |
+
|
105 |
+
base_color = '#19191a' # Hardcoded base color
|
106 |
+
|
107 |
+
dot.node(
|
108 |
+
'central',
|
109 |
+
data['central_node'],
|
110 |
+
shape='box', # Rectangular shape
|
111 |
+
style='filled,rounded', # Filled and rounded corners
|
112 |
+
fillcolor=base_color, # Darkest color
|
113 |
+
fontcolor='white', # White text for dark background
|
114 |
+
fontsize='16', # Larger font for central node
|
115 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ๋ช
์์ ์ง์
|
116 |
+
)
|
117 |
+
|
118 |
+
add_nodes_and_edges(dot, 'central', data.get('nodes', []), current_depth=1, base_color=base_color)
|
119 |
+
|
120 |
+
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
|
121 |
+
dot.render(tmp.name, format=output_format, cleanup=True)
|
122 |
+
return f"{tmp.name}.{output_format}"
|
123 |
+
|
124 |
+
except json.JSONDecodeError:
|
125 |
+
return "Error: Invalid JSON format"
|
126 |
+
except Exception as e:
|
127 |
+
return f"Error: {str(e)}"
|
sample_data.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONCEPT_MAP_JSON = """
|
2 |
+
{
|
3 |
+
"central_node": "Artificial Intelligence (AI)",
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": "ml_fundamental",
|
7 |
+
"label": "Machine Learning",
|
8 |
+
"relationship": "is essential for",
|
9 |
+
"subnodes": [
|
10 |
+
{
|
11 |
+
"id": "dl_branch",
|
12 |
+
"label": "Deep Learning",
|
13 |
+
"relationship": "for example",
|
14 |
+
"subnodes": [
|
15 |
+
{
|
16 |
+
"id": "cnn_example",
|
17 |
+
"label": "CNNs",
|
18 |
+
"relationship": "for example"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"id": "rnn_example",
|
22 |
+
"label": "RNNs",
|
23 |
+
"relationship": "for example"
|
24 |
+
}
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"id": "rl_branch",
|
29 |
+
"label": "Reinforcement Learning",
|
30 |
+
"relationship": "for example",
|
31 |
+
"subnodes": [
|
32 |
+
{
|
33 |
+
"id": "qlearning_example",
|
34 |
+
"label": "Q-Learning",
|
35 |
+
"relationship": "example"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"id": "pg_example",
|
39 |
+
"label": "Policy Gradients",
|
40 |
+
"relationship": "example"
|
41 |
+
}
|
42 |
+
]
|
43 |
+
}
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"id": "ai_types",
|
48 |
+
"label": "Types",
|
49 |
+
"relationship": "formed by",
|
50 |
+
"subnodes": [
|
51 |
+
{
|
52 |
+
"id": "agi_type",
|
53 |
+
"label": "AGI",
|
54 |
+
"relationship": "this is",
|
55 |
+
"subnodes": [
|
56 |
+
{
|
57 |
+
"id": "strong_ai",
|
58 |
+
"label": "Strong AI",
|
59 |
+
"relationship": "provoked by",
|
60 |
+
"subnodes": [
|
61 |
+
{
|
62 |
+
"id": "human_intel",
|
63 |
+
"label": "Human-level Intel.",
|
64 |
+
"relationship": "of"
|
65 |
+
}
|
66 |
+
]
|
67 |
+
}
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"id": "ani_type",
|
72 |
+
"label": "ANI",
|
73 |
+
"relationship": "this is",
|
74 |
+
"subnodes": [
|
75 |
+
{
|
76 |
+
"id": "weak_ai",
|
77 |
+
"label": "Weak AI",
|
78 |
+
"relationship": "provoked by",
|
79 |
+
"subnodes": [
|
80 |
+
{
|
81 |
+
"id": "narrow_tasks",
|
82 |
+
"label": "Narrow Tasks",
|
83 |
+
"relationship": "of"
|
84 |
+
}
|
85 |
+
]
|
86 |
+
}
|
87 |
+
]
|
88 |
+
}
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"id": "ai_capabilities",
|
93 |
+
"label": "Capabilities",
|
94 |
+
"relationship": "change",
|
95 |
+
"subnodes": [
|
96 |
+
{
|
97 |
+
"id": "data_proc",
|
98 |
+
"label": "Data Processing",
|
99 |
+
"relationship": "can",
|
100 |
+
"subnodes": [
|
101 |
+
{
|
102 |
+
"id": "big_data",
|
103 |
+
"label": "Big Data",
|
104 |
+
"relationship": "as",
|
105 |
+
"subnodes": [
|
106 |
+
{
|
107 |
+
"id": "analysis_example",
|
108 |
+
"label": "Data Analysis",
|
109 |
+
"relationship": "example"
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"id": "prediction_example",
|
113 |
+
"label": "Prediction",
|
114 |
+
"relationship": "example"
|
115 |
+
}
|
116 |
+
]
|
117 |
+
}
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"id": "decision_making",
|
122 |
+
"label": "Decision Making",
|
123 |
+
"relationship": "can be",
|
124 |
+
"subnodes": [
|
125 |
+
{
|
126 |
+
"id": "automation",
|
127 |
+
"label": "Automation",
|
128 |
+
"relationship": "as",
|
129 |
+
"subnodes": [
|
130 |
+
{
|
131 |
+
"id": "robotics_example",
|
132 |
+
"label": "Robotics",
|
133 |
+
"relationship": "Example"},
|
134 |
+
{
|
135 |
+
"id": "autonomous_example",
|
136 |
+
"label": "Autonomous Vehicles",
|
137 |
+
"relationship": "of one"
|
138 |
+
}
|
139 |
+
]
|
140 |
+
}
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"id": "problem_solving",
|
145 |
+
"label": "Problem Solving",
|
146 |
+
"relationship": "can",
|
147 |
+
"subnodes": [
|
148 |
+
{
|
149 |
+
"id": "optimization",
|
150 |
+
"label": "Optimization",
|
151 |
+
"relationship": "as is",
|
152 |
+
"subnodes": [
|
153 |
+
{
|
154 |
+
"id": "algorithms_example",
|
155 |
+
"label": "Algorithms",
|
156 |
+
"relationship": "for example"
|
157 |
+
}
|
158 |
+
]
|
159 |
+
}
|
160 |
+
]
|
161 |
+
}
|
162 |
+
]
|
163 |
+
}
|
164 |
+
]
|
165 |
+
}
|
166 |
+
"""
|
167 |
+
|
168 |
+
# JSON for Synoptic Chart (horizontal hierarchy) - AI related, 4 levels
|
169 |
+
SYNOPTIC_CHART_JSON = """
|
170 |
+
{
|
171 |
+
"central_node": "AI Project Lifecycle",
|
172 |
+
"nodes": [
|
173 |
+
{
|
174 |
+
"id": "phase1",
|
175 |
+
"label": "I. Problem Definition & Data Acquisition",
|
176 |
+
"relationship": "Starts with",
|
177 |
+
"subnodes": [
|
178 |
+
{
|
179 |
+
"id": "sub1_1",
|
180 |
+
"label": "1. Problem Formulation",
|
181 |
+
"relationship": "Involves",
|
182 |
+
"subnodes": [
|
183 |
+
{"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
|
184 |
+
{"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"id": "sub1_2",
|
189 |
+
"label": "2. Data Collection",
|
190 |
+
"relationship": "Followed by",
|
191 |
+
"subnodes": [
|
192 |
+
{"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
|
193 |
+
{"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
|
194 |
+
]
|
195 |
+
}
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"id": "phase2",
|
200 |
+
"label": "II. Model Development",
|
201 |
+
"relationship": "Proceeds to",
|
202 |
+
"subnodes": [
|
203 |
+
{
|
204 |
+
"id": "sub2_1",
|
205 |
+
"label": "1. Feature Engineering",
|
206 |
+
"relationship": "Comprises",
|
207 |
+
"subnodes": [
|
208 |
+
{"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
|
209 |
+
{"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"id": "sub2_2",
|
214 |
+
"label": "2. Model Training",
|
215 |
+
"relationship": "Involves",
|
216 |
+
"subnodes": [
|
217 |
+
{"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
|
218 |
+
{"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
|
219 |
+
]
|
220 |
+
}
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"id": "phase3",
|
225 |
+
"label": "III. Evaluation & Deployment",
|
226 |
+
"relationship": "Culminates in",
|
227 |
+
"subnodes": [
|
228 |
+
{
|
229 |
+
"id": "sub3_1",
|
230 |
+
"label": "1. Model Evaluation",
|
231 |
+
"relationship": "Includes",
|
232 |
+
"subnodes": [
|
233 |
+
{"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
|
234 |
+
{"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"id": "sub3_2",
|
239 |
+
"label": "2. Deployment & Monitoring",
|
240 |
+
"relationship": "Requires",
|
241 |
+
"subnodes": [
|
242 |
+
{"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
|
243 |
+
{"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
|
244 |
+
]
|
245 |
+
}
|
246 |
+
]
|
247 |
+
}
|
248 |
+
]
|
249 |
+
}
|
250 |
+
"""
|
251 |
+
|
252 |
+
# JSON for Radial Diagram (central expansion) - AI related, 3 levels with 5->10 structure
|
253 |
+
RADIAL_DIAGRAM_JSON = """
|
254 |
+
{
|
255 |
+
"central_node": "AI Core Concepts & Domains",
|
256 |
+
"nodes": [
|
257 |
+
{
|
258 |
+
"id": "foundational_ml",
|
259 |
+
"label": "Foundational ML",
|
260 |
+
"relationship": "builds on",
|
261 |
+
"subnodes": [
|
262 |
+
{"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
|
263 |
+
{"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"id": "dl_architectures",
|
268 |
+
"label": "Deep Learning Arch.",
|
269 |
+
"relationship": "evolved from",
|
270 |
+
"subnodes": [
|
271 |
+
{"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
|
272 |
+
{"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"id": "major_applications",
|
277 |
+
"label": "Major AI Applications",
|
278 |
+
"relationship": "applied in",
|
279 |
+
"subnodes": [
|
280 |
+
{"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
|
281 |
+
{"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"id": "ethical_concerns",
|
286 |
+
"label": "Ethical AI Concerns",
|
287 |
+
"relationship": "addresses",
|
288 |
+
"subnodes": [
|
289 |
+
{"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
|
290 |
+
{"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"id": "future_trends",
|
295 |
+
"label": "Future AI Trends",
|
296 |
+
"relationship": "looking at",
|
297 |
+
"subnodes": [
|
298 |
+
{"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
|
299 |
+
{"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
|
300 |
+
]
|
301 |
+
}
|
302 |
+
]
|
303 |
+
}
|
304 |
+
"""
|
305 |
+
|
306 |
+
PROCESS_FLOW_JSON = """
|
307 |
+
{
|
308 |
+
"start_node": "Start Inference Request",
|
309 |
+
"nodes": [
|
310 |
+
{
|
311 |
+
"id": "user_input",
|
312 |
+
"label": "Receive User Input (Data)",
|
313 |
+
"type": "io"
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"id": "preprocess_data",
|
317 |
+
"label": "Preprocess Data",
|
318 |
+
"type": "process"
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"id": "validate_data",
|
322 |
+
"label": "Validate Data Format/Type",
|
323 |
+
"type": "decision"
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"id": "data_valid_yes",
|
327 |
+
"label": "Data Valid?",
|
328 |
+
"type": "decision"
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"id": "load_model",
|
332 |
+
"label": "Load AI Model (if not cached)",
|
333 |
+
"type": "process"
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"id": "run_inference",
|
337 |
+
"label": "Run AI Model Inference",
|
338 |
+
"type": "process"
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"id": "postprocess_output",
|
342 |
+
"label": "Postprocess Model Output",
|
343 |
+
"type": "process"
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"id": "send_response",
|
347 |
+
"label": "Send Response to User",
|
348 |
+
"type": "io"
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"id": "log_error",
|
352 |
+
"label": "Log Error & Notify User",
|
353 |
+
"type": "process"
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"id": "end_inference_process",
|
357 |
+
"label": "End Inference Process",
|
358 |
+
"type": "end"
|
359 |
+
}
|
360 |
+
],
|
361 |
+
"connections": [
|
362 |
+
{"from": "start_node", "to": "user_input", "label": "Request"},
|
363 |
+
{"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
|
364 |
+
{"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
|
365 |
+
{"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
|
366 |
+
{"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
|
367 |
+
{"from": "data_valid_yes", "to": "log_error", "label": "No"},
|
368 |
+
{"from": "load_model", "to": "run_inference", "label": "Model Ready"},
|
369 |
+
{"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
|
370 |
+
{"from": "postprocess_output", "to": "send_response", "label": "Ready"},
|
371 |
+
{"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
|
372 |
+
{"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
|
373 |
+
]
|
374 |
+
}
|
375 |
+
"""
|
376 |
+
|
377 |
+
# New JSON for Work Breakdown Structure (WBS) Diagram - similar to image, but not identical
|
378 |
+
WBS_DIAGRAM_JSON = """
|
379 |
+
{
|
380 |
+
"project_title": "AI Model Development Project",
|
381 |
+
"phases": [
|
382 |
+
{
|
383 |
+
"id": "phase_prep",
|
384 |
+
"label": "Preparation",
|
385 |
+
"tasks": [
|
386 |
+
{
|
387 |
+
"id": "task_1_1_vision",
|
388 |
+
"label": "Identify Vision",
|
389 |
+
"subtasks": [
|
390 |
+
{
|
391 |
+
"id": "subtask_1_1_1_design_staff",
|
392 |
+
"label": "Design & Staffing",
|
393 |
+
"sub_subtasks": [
|
394 |
+
{
|
395 |
+
"id": "ss_task_1_1_1_1_env_setup",
|
396 |
+
"label": "Environment Setup",
|
397 |
+
"sub_sub_subtasks": [
|
398 |
+
{
|
399 |
+
"id": "sss_task_1_1_1_1_1_lib_install",
|
400 |
+
"label": "Install Libraries",
|
401 |
+
"final_level_tasks": [
|
402 |
+
{"id": "ft_1_1_1_1_1_1_data_access", "label": "Grant Data Access"}
|
403 |
+
]
|
404 |
+
}
|
405 |
+
]
|
406 |
+
}
|
407 |
+
]
|
408 |
+
}
|
409 |
+
]
|
410 |
+
}
|
411 |
+
]
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"id": "phase_plan",
|
415 |
+
"label": "Planning",
|
416 |
+
"tasks": [
|
417 |
+
{
|
418 |
+
"id": "task_2_1_cost_analysis",
|
419 |
+
"label": "Cost Analysis",
|
420 |
+
"subtasks": [
|
421 |
+
{
|
422 |
+
"id": "subtask_2_1_1_benefit_analysis",
|
423 |
+
"label": "Benefit Analysis",
|
424 |
+
"sub_subtasks": [
|
425 |
+
{
|
426 |
+
"id": "ss_task_2_1_1_1_risk_assess",
|
427 |
+
"label": "AI Risk Assessment",
|
428 |
+
"sub_sub_subtasks": [
|
429 |
+
{
|
430 |
+
"id": "sss_task_2_1_1_1_1_model_selection",
|
431 |
+
"label": "Model Selection",
|
432 |
+
"final_level_tasks": [
|
433 |
+
{"id": "ft_2_1_1_1_1_1_data_strategy", "label": "Data Strategy"}
|
434 |
+
]
|
435 |
+
}
|
436 |
+
]
|
437 |
+
}
|
438 |
+
]
|
439 |
+
}
|
440 |
+
]
|
441 |
+
}
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"id": "phase_dev",
|
446 |
+
"label": "Development",
|
447 |
+
"tasks": [
|
448 |
+
{
|
449 |
+
"id": "task_3_1_change_mgmt",
|
450 |
+
"label": "Data Preprocessing",
|
451 |
+
"subtasks": [
|
452 |
+
{
|
453 |
+
"id": "subtask_3_1_1_implementation",
|
454 |
+
"label": "Feature Engineering",
|
455 |
+
"sub_subtasks": [
|
456 |
+
{
|
457 |
+
"id": "ss_task_3_1_1_1_beta_testing",
|
458 |
+
"label": "Model Training",
|
459 |
+
"sub_sub_subtasks": [
|
460 |
+
{
|
461 |
+
"id": "sss_task_3_1_1_1_1_other_task",
|
462 |
+
"label": "Model Evaluation",
|
463 |
+
"final_level_tasks": [
|
464 |
+
{"id": "ft_3_1_1_1_1_1_hyperparam_tune", "label": "Hyperparameter Tuning"}
|
465 |
+
]
|
466 |
+
}
|
467 |
+
]
|
468 |
+
}
|
469 |
+
]
|
470 |
+
}
|
471 |
+
]
|
472 |
+
}
|
473 |
+
]
|
474 |
+
}
|
475 |
+
]
|
476 |
+
}
|
477 |
+
|
478 |
+
"""
|
synoptic_chart_generator.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import graphviz
|
2 |
+
import json
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
+
import os
|
5 |
+
from graph_generator_utils import add_nodes_and_edges
|
6 |
+
|
7 |
+
def generate_synoptic_chart(json_input: str, output_format: str) -> str:
|
8 |
+
"""
|
9 |
+
Generates a synoptic chart (horizontal flowchart) from JSON input.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
json_input (str): A JSON string describing the synoptic chart structure.
|
13 |
+
It must follow the Expected JSON Format Example below.
|
14 |
+
|
15 |
+
Expected JSON Format Example:
|
16 |
+
{
|
17 |
+
"central_node": "AI Project Lifecycle",
|
18 |
+
"nodes": [
|
19 |
+
{
|
20 |
+
"id": "phase1",
|
21 |
+
"label": "I. Problem Definition & Data Acquisition",
|
22 |
+
"relationship": "Starts with",
|
23 |
+
"subnodes": [
|
24 |
+
{
|
25 |
+
"id": "sub1_1",
|
26 |
+
"label": "1. Problem Formulation",
|
27 |
+
"relationship": "Involves",
|
28 |
+
"subnodes": [
|
29 |
+
{"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
|
30 |
+
{"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": "sub1_2",
|
35 |
+
"label": "2. Data Collection",
|
36 |
+
"relationship": "Followed by",
|
37 |
+
"subnodes": [
|
38 |
+
{"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
|
39 |
+
{"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
|
40 |
+
]
|
41 |
+
}
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"id": "phase2",
|
46 |
+
"label": "II. Model Development",
|
47 |
+
"relationship": "Proceeds to",
|
48 |
+
"subnodes": [
|
49 |
+
{
|
50 |
+
"id": "sub2_1",
|
51 |
+
"label": "1. Feature Engineering",
|
52 |
+
"relationship": "Comprises",
|
53 |
+
"subnodes": [
|
54 |
+
{"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
|
55 |
+
{"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"id": "sub2_2",
|
60 |
+
"label": "2. Model Training",
|
61 |
+
"relationship": "Involves",
|
62 |
+
"subnodes": [
|
63 |
+
{"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
|
64 |
+
{"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
|
65 |
+
]
|
66 |
+
}
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"id": "phase3",
|
71 |
+
"label": "III. Evaluation & Deployment",
|
72 |
+
"relationship": "Culminates in",
|
73 |
+
"subnodes": [
|
74 |
+
{
|
75 |
+
"id": "sub3_1",
|
76 |
+
"label": "1. Model Evaluation",
|
77 |
+
"relationship": "Includes",
|
78 |
+
"subnodes": [
|
79 |
+
{"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
|
80 |
+
{"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"id": "sub3_2",
|
85 |
+
"label": "2. Deployment & Monitoring",
|
86 |
+
"relationship": "Requires",
|
87 |
+
"subnodes": [
|
88 |
+
{"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
|
89 |
+
{"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
|
90 |
+
]
|
91 |
+
}
|
92 |
+
]
|
93 |
+
}
|
94 |
+
]
|
95 |
+
}
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
str: The filepath to the generated PNG image file.
|
99 |
+
"""
|
100 |
+
try:
|
101 |
+
if not json_input.strip():
|
102 |
+
return "Error: Empty input"
|
103 |
+
|
104 |
+
data = json.loads(json_input)
|
105 |
+
|
106 |
+
if 'central_node' not in data or 'nodes' not in data:
|
107 |
+
raise ValueError("Missing required fields: central_node or nodes")
|
108 |
+
|
109 |
+
# ํ๊ธ ํฐํธ ์ค์
|
110 |
+
# GDFONTPATH๊ฐ ์ค์ ๋์ด ์์ผ๋ฉด ํฐํธ ํ์ผ๋ช
(ํ์ฅ์ ์ ์ธ) ์ฌ์ฉ
|
111 |
+
korean_font = 'NanumGothic-Regular'
|
112 |
+
|
113 |
+
dot = graphviz.Digraph(
|
114 |
+
name='SynopticChart',
|
115 |
+
format='png',
|
116 |
+
graph_attr={
|
117 |
+
'rankdir': 'LR', # Left-to-Right layout (horizontal hierarchy)
|
118 |
+
'splines': 'ortho', # Straight lines
|
119 |
+
'bgcolor': 'white', # White background
|
120 |
+
'pad': '0.5', # Padding around the graph
|
121 |
+
'ranksep': '0.7', # Reduced horizontal separation between ranks (columns)
|
122 |
+
'nodesep': '0.3', # Adjusted vertical separation between nodes in the same rank
|
123 |
+
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํ๊ธ ํฐํธ
|
124 |
+
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
|
125 |
+
},
|
126 |
+
node_attr={
|
127 |
+
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
|
128 |
+
},
|
129 |
+
edge_attr={
|
130 |
+
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
|
131 |
+
}
|
132 |
+
)
|
133 |
+
|
134 |
+
base_color = '#19191a'
|
135 |
+
|
136 |
+
dot.node(
|
137 |
+
'central',
|
138 |
+
data['central_node'],
|
139 |
+
shape='box', # Rectangular shape
|
140 |
+
style='filled,rounded', # Filled and rounded corners
|
141 |
+
fillcolor=base_color, # Darkest color
|
142 |
+
fontcolor='white', # White text for dark background
|
143 |
+
fontsize='16', # Larger font for central node
|
144 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ๋ช
์์ ์ง์
|
145 |
+
)
|
146 |
+
|
147 |
+
add_nodes_and_edges(dot, 'central', data.get('nodes', []), current_depth=1, base_color=base_color)
|
148 |
+
|
149 |
+
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
|
150 |
+
dot.render(tmp.name, format=output_format, cleanup=True)
|
151 |
+
return f"{tmp.name}.{output_format}"
|
152 |
+
|
153 |
+
except json.JSONDecodeError:
|
154 |
+
return "Error: Invalid JSON format"
|
155 |
+
except Exception as e:
|
156 |
+
return f"Error: {str(e)}"
|
wbs_diagram_generator.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import graphviz
|
2 |
+
import json
|
3 |
+
from tempfile import NamedTemporaryFile
|
4 |
+
import os
|
5 |
+
|
6 |
+
def generate_wbs_diagram(json_input: str, output_format: str) -> str:
|
7 |
+
"""
|
8 |
+
Generates a Work Breakdown Structure (WBS) Diagram from JSON input.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
json_input (str): A JSON string describing the WBS structure.
|
12 |
+
It must follow the Expected JSON Format Example below.
|
13 |
+
|
14 |
+
Expected JSON Format Example:
|
15 |
+
{
|
16 |
+
"project_title": "AI Model Development Project",
|
17 |
+
"phases": [
|
18 |
+
{
|
19 |
+
"id": "phase_prep",
|
20 |
+
"label": "Preparation",
|
21 |
+
"tasks": [
|
22 |
+
{
|
23 |
+
"id": "task_1_1_vision",
|
24 |
+
"label": "Identify Vision",
|
25 |
+
"subtasks": [
|
26 |
+
{
|
27 |
+
"id": "subtask_1_1_1_design_staff",
|
28 |
+
"label": "Design & Staffing",
|
29 |
+
"sub_subtasks": [
|
30 |
+
{
|
31 |
+
"id": "ss_task_1_1_1_1_env_setup",
|
32 |
+
"label": "Environment Setup",
|
33 |
+
"sub_sub_subtasks": [
|
34 |
+
{
|
35 |
+
"id": "sss_task_1_1_1_1_1_lib_install",
|
36 |
+
"label": "Install Libraries",
|
37 |
+
"final_level_tasks": [
|
38 |
+
{"id": "ft_1_1_1_1_1_1_data_access", "label": "Grant Data Access"}
|
39 |
+
]
|
40 |
+
}
|
41 |
+
]
|
42 |
+
}
|
43 |
+
]
|
44 |
+
}
|
45 |
+
]
|
46 |
+
}
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"id": "phase_plan",
|
51 |
+
"label": "Planning",
|
52 |
+
"tasks": [
|
53 |
+
{
|
54 |
+
"id": "task_2_1_cost_analysis",
|
55 |
+
"label": "Cost Analysis",
|
56 |
+
"subtasks": [
|
57 |
+
{
|
58 |
+
"id": "subtask_2_1_1_benefit_analysis",
|
59 |
+
"label": "Benefit Analysis",
|
60 |
+
"sub_subtasks": [
|
61 |
+
{
|
62 |
+
"id": "ss_task_2_1_1_1_risk_assess",
|
63 |
+
"label": "AI Risk Assessment",
|
64 |
+
"sub_sub_subtasks": [
|
65 |
+
{
|
66 |
+
"id": "sss_task_2_1_1_1_1_model_selection",
|
67 |
+
"label": "Model Selection",
|
68 |
+
"final_level_tasks": [
|
69 |
+
{"id": "ft_2_1_1_1_1_1_data_strategy", "label": "Data Strategy"}
|
70 |
+
]
|
71 |
+
}
|
72 |
+
]
|
73 |
+
}
|
74 |
+
]
|
75 |
+
}
|
76 |
+
]
|
77 |
+
}
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"id": "phase_dev",
|
82 |
+
"label": "Development",
|
83 |
+
"tasks": [
|
84 |
+
{
|
85 |
+
"id": "task_3_1_change_mgmt",
|
86 |
+
"label": "Data Preprocessing",
|
87 |
+
"subtasks": [
|
88 |
+
{
|
89 |
+
"id": "subtask_3_1_1_implementation",
|
90 |
+
"label": "Feature Engineering",
|
91 |
+
"sub_subtasks": [
|
92 |
+
{
|
93 |
+
"id": "ss_task_3_1_1_1_beta_testing",
|
94 |
+
"label": "Model Training",
|
95 |
+
"sub_sub_subtasks": [
|
96 |
+
{
|
97 |
+
"id": "sss_task_3_1_1_1_1_other_task",
|
98 |
+
"label": "Model Evaluation",
|
99 |
+
"final_level_tasks": [
|
100 |
+
{"id": "ft_3_1_1_1_1_1_hyperparam_tune", "label": "Hyperparameter Tuning"}
|
101 |
+
]
|
102 |
+
}
|
103 |
+
]
|
104 |
+
}
|
105 |
+
]
|
106 |
+
}
|
107 |
+
]
|
108 |
+
}
|
109 |
+
]
|
110 |
+
}
|
111 |
+
]
|
112 |
+
}
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
str: The filepath to the generated PNG image file.
|
116 |
+
"""
|
117 |
+
try:
|
118 |
+
if not json_input.strip():
|
119 |
+
return "Error: Empty input"
|
120 |
+
|
121 |
+
data = json.loads(json_input)
|
122 |
+
|
123 |
+
if 'project_title' not in data or 'phases' not in data:
|
124 |
+
raise ValueError("Missing required fields: project_title or phases")
|
125 |
+
|
126 |
+
# ํ๊ธ ํฐํธ ์ค์
|
127 |
+
# GDFONTPATH๊ฐ ์ค์ ๋์ด ์์ผ๋ฉด ํฐํธ ํ์ผ๋ช
(ํ์ฅ์ ์ ์ธ) ์ฌ์ฉ
|
128 |
+
korean_font = 'NanumGothic-Regular'
|
129 |
+
|
130 |
+
dot = graphviz.Digraph(
|
131 |
+
name='WBSDiagram',
|
132 |
+
graph_attr={
|
133 |
+
'rankdir': 'TB', # Top-to-Bottom hierarchy
|
134 |
+
'splines': 'polyline', # polyline์ผ๋ก ๋ณ๊ฒฝ (ortho ๋์ )
|
135 |
+
'bgcolor': 'white', # White background
|
136 |
+
'pad': '0.5', # Padding
|
137 |
+
'ranksep': '0.6', # Adjust vertical separation between ranks
|
138 |
+
'nodesep': '0.5', # Adjust horizontal separation between nodes
|
139 |
+
'fontname': korean_font, # ๊ทธ๋ํ ์ ์ฒด ํ๊ธ ํฐํธ
|
140 |
+
'charset': 'UTF-8' # UTF-8 ์ธ์ฝ๋ฉ
|
141 |
+
},
|
142 |
+
node_attr={
|
143 |
+
'fontname': korean_font # ๋ชจ๋ ๋
ธ๋์ ๊ธฐ๋ณธ ํฐํธ
|
144 |
+
},
|
145 |
+
edge_attr={
|
146 |
+
'fontname': korean_font # ๋ชจ๋ ์ฃ์ง์ ๊ธฐ๋ณธ ํฐํธ
|
147 |
+
}
|
148 |
+
)
|
149 |
+
|
150 |
+
base_color = '#19191a' # Hardcoded base color
|
151 |
+
|
152 |
+
# ID ์ ๊ทํ ํจ์ - ํ๊ธ ID๋ฅผ ์์ ํ ํํ๋ก ๋ณํ
|
153 |
+
def normalize_id(id_str):
|
154 |
+
"""๋
ธ๋ ID๋ฅผ ์์ ํ ํํ๋ก ๋ณํ"""
|
155 |
+
import re
|
156 |
+
# ์๋ฌธ, ์ซ์, ์ธ๋์ค์ฝ์ด๋ง ํ์ฉ
|
157 |
+
safe_id = re.sub(r'[^a-zA-Z0-9_]', '_', str(id_str))
|
158 |
+
# ์ซ์๋ก ์์ํ๋ฉด 'n_' ์ ๋์ฌ ์ถ๊ฐ
|
159 |
+
if safe_id and safe_id[0].isdigit():
|
160 |
+
safe_id = 'n_' + safe_id
|
161 |
+
# ๋น ๋ฌธ์์ด์ด๋ฉด ๊ธฐ๋ณธ๊ฐ
|
162 |
+
if not safe_id:
|
163 |
+
safe_id = 'node_' + str(hash(id_str))
|
164 |
+
return safe_id
|
165 |
+
|
166 |
+
# Project Title node (main node)
|
167 |
+
dot.node(
|
168 |
+
'project_root',
|
169 |
+
data['project_title'],
|
170 |
+
shape='box',
|
171 |
+
style='filled,rounded',
|
172 |
+
fillcolor=base_color,
|
173 |
+
fontcolor='white',
|
174 |
+
fontsize='18',
|
175 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
176 |
+
)
|
177 |
+
|
178 |
+
# Helper for color and font based on depth for WBS
|
179 |
+
def get_gradient_color(depth, base_hex_color, lightening_factor=0.12):
|
180 |
+
base_r = int(base_hex_color[1:3], 16)
|
181 |
+
base_g = int(base_hex_color[3:5], 16)
|
182 |
+
base_b = int(base_hex_color[5:7], 16)
|
183 |
+
|
184 |
+
current_r = base_r + int((255 - base_r) * depth * lightening_factor)
|
185 |
+
current_g = base_g + int((255 - base_g) * depth * lightening_factor)
|
186 |
+
current_b = base_b + int((255 - base_b) * depth * lightening_factor)
|
187 |
+
|
188 |
+
return f'#{min(255, current_r):02x}{min(255, current_g):02x}{min(255, current_b):02x}'
|
189 |
+
|
190 |
+
def get_font_color_for_background(depth, base_hex_color, lightening_factor=0.12):
|
191 |
+
base_r = int(base_hex_color[1:3], 16)
|
192 |
+
base_g = int(base_hex_color[3:5], 16)
|
193 |
+
base_b = int(base_hex_color[5:7], 16)
|
194 |
+
current_r = base_r + (255 - base_r) * depth * lightening_factor
|
195 |
+
current_g = base_g + (255 - base_g) * depth * lightening_factor
|
196 |
+
current_b = base_b + (255 - base_b) * depth * lightening_factor
|
197 |
+
|
198 |
+
luminance = (0.2126 * current_r + 0.7152 * current_g + 0.0722 * current_b) / 255
|
199 |
+
return 'white' if luminance < 0.5 else 'black'
|
200 |
+
|
201 |
+
def _add_wbs_nodes_recursive(parent_id, current_level_tasks, current_depth):
|
202 |
+
for task_data in current_level_tasks:
|
203 |
+
task_id = task_data.get('id')
|
204 |
+
task_label = task_data.get('label')
|
205 |
+
|
206 |
+
if not all([task_id, task_label]):
|
207 |
+
raise ValueError(f"Invalid task data at depth {current_depth}: {task_data}")
|
208 |
+
|
209 |
+
# ID ์ ๊ทํ
|
210 |
+
safe_task_id = normalize_id(task_id)
|
211 |
+
|
212 |
+
node_fill_color = get_gradient_color(current_depth, base_color)
|
213 |
+
node_font_color = get_font_color_for_background(current_depth, base_color)
|
214 |
+
font_size = max(9, 14 - (current_depth * 2))
|
215 |
+
|
216 |
+
dot.node(
|
217 |
+
safe_task_id,
|
218 |
+
task_label,
|
219 |
+
shape='box',
|
220 |
+
style='filled,rounded',
|
221 |
+
fillcolor=node_fill_color,
|
222 |
+
fontcolor=node_font_color,
|
223 |
+
fontsize=str(font_size),
|
224 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
225 |
+
)
|
226 |
+
dot.edge(parent_id, safe_task_id, color='#4a4a4a', arrowhead='none', fontname=korean_font)
|
227 |
+
|
228 |
+
# Recursively call for next level of tasks (subtasks, sub_subtasks, etc.)
|
229 |
+
# This handles arbitrary nested keys like 'subtasks', 'sub_subtasks', 'final_level_tasks'
|
230 |
+
next_level_keys = ['tasks', 'subtasks', 'sub_subtasks', 'sub_sub_subtasks', 'final_level_tasks']
|
231 |
+
for key_idx, key in enumerate(next_level_keys):
|
232 |
+
if key in task_data and isinstance(task_data[key], list):
|
233 |
+
_add_wbs_nodes_recursive(safe_task_id, task_data[key], current_depth + 1)
|
234 |
+
break # Only process the first found sub-level key
|
235 |
+
|
236 |
+
# Process phases (level 1 from project_root)
|
237 |
+
phase_depth = 1
|
238 |
+
for phase in data['phases']:
|
239 |
+
phase_id = phase.get('id')
|
240 |
+
phase_label = phase.get('label')
|
241 |
+
|
242 |
+
if not all([phase_id, phase_label]):
|
243 |
+
raise ValueError(f"Invalid phase data: {phase}")
|
244 |
+
|
245 |
+
# ID ์ ๊ทํ
|
246 |
+
safe_phase_id = normalize_id(phase_id)
|
247 |
+
|
248 |
+
phase_fill_color = get_gradient_color(phase_depth, base_color)
|
249 |
+
phase_font_color = get_font_color_for_background(phase_depth, base_color)
|
250 |
+
font_size_phase = max(9, 14 - (phase_depth * 2))
|
251 |
+
|
252 |
+
dot.node(
|
253 |
+
safe_phase_id,
|
254 |
+
phase_label,
|
255 |
+
shape='box',
|
256 |
+
style='filled,rounded',
|
257 |
+
fillcolor=phase_fill_color,
|
258 |
+
fontcolor=phase_font_color,
|
259 |
+
fontsize=str(font_size_phase),
|
260 |
+
fontname=korean_font # ํ๊ธ ํฐํธ ์ถ๊ฐ
|
261 |
+
)
|
262 |
+
dot.edge('project_root', safe_phase_id, color='#4a4a4a', arrowhead='none', fontname=korean_font)
|
263 |
+
|
264 |
+
# Start recursion for tasks under this phase
|
265 |
+
if 'tasks' in phase and isinstance(phase['tasks'], list):
|
266 |
+
_add_wbs_nodes_recursive(safe_phase_id, phase['tasks'], phase_depth + 1)
|
267 |
+
|
268 |
+
# ๋ ๋๋ง
|
269 |
+
try:
|
270 |
+
with NamedTemporaryFile(delete=False, suffix='.gv', prefix='wbs_') as tmp:
|
271 |
+
# ํ์ผ ์ด๋ฆ์์ .gv ํ์ฅ์ ์ ๊ฑฐ
|
272 |
+
output_filename = tmp.name[:-3] # '.gv' ์ ๊ฑฐ
|
273 |
+
output_path = dot.render(output_filename, format=output_format, cleanup=True)
|
274 |
+
return output_path
|
275 |
+
except Exception as render_error:
|
276 |
+
# ๋ ๋๋ง ์คํจ ์ ๊ฐ๋จํ ์๋ฌ ๋ฉ์์ง
|
277 |
+
return f"Error: Failed to render diagram - {str(render_error).split(';')[0]}"
|
278 |
+
|
279 |
+
except json.JSONDecodeError as e:
|
280 |
+
return "Error: Invalid JSON format"
|
281 |
+
except Exception as e:
|
282 |
+
# ์๋ฌ ๋ฉ์์ง๋ฅผ ๊ฐ๋จํ๊ฒ ์ ์ง
|
283 |
+
error_msg = str(e).split('\n')[0] # ์ฒซ ์ค๋ง ์ฌ์ฉ
|
284 |
+
if len(error_msg) > 100:
|
285 |
+
error_msg = error_msg[:100] + "..."
|
286 |
+
return f"Error: {error_msg}"
|