Spaces:
Running
Running
File size: 8,476 Bytes
5024af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
logging.basicConfig(level=logging.INFO)
########################################
# OKX endpoints & utility
########################################
# 1) GET symbols (spot tickers)
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
# 2) GET historical candles for a symbol
# e.g. https://www.okx.com/api/v5/market/candles?instId=BTC-USDT&bar=1H&limit=100
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
# You can extend or modify this to match more of OKX's `bar` intervals
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W", # OKX supports 1W, etc.
}
def fetch_okx_symbols():
"""
Fetch the list of symbols (instId) from OKX Spot tickers.
"""
logging.info("Fetching symbols from OKX Spot tickers...")
try:
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
logging.error(f"Non-zero code returned: {json_data}")
return ["Error: Could not fetch OKX symbols"]
data = json_data.get("data", [])
# Example item in data: { "instId": "ETH-USDT", "instType": "SPOT", ... }
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
if not symbols:
logging.warning("No spot symbols found.")
return ["Error: No spot symbols found."]
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
return sorted(symbols)
except Exception as e:
logging.error(f"Error fetching OKX symbols: {e}")
return [f"Error: {str(e)}"]
def fetch_okx_candles(symbol, timeframe="1H", limit=100):
"""
Fetch historical candle data for a symbol from OKX.
timeframe must match OKX's `bar` (e.g. "1H", "4H", "1D").
Returns (DataFrame, error_message) or (DataFrame, "").
"""
logging.info(f"Fetching {limit} candles for {symbol} @ {timeframe} from OKX...")
params = {
"instId": symbol,
"bar": timeframe,
"limit": limit
}
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
logging.error(msg)
return pd.DataFrame(), msg
# Data looks like: ["1673684400000", "20923.7", "20952.5", "20881.3", "20945.8", "927.879", "19412314.5671"]
# Let's parse columns: [0] ts, [1] open, [2] high, [3] low, [4] close, [5] volume, [6] ??? quoteVol
items = json_data.get("data", [])
if not items:
warning_msg = f"No candle data returned for {symbol}."
logging.warning(warning_msg)
return pd.DataFrame(), warning_msg
# items is a list of lists, each is a candle. Reverse if needed to go old->new:
# OKX returns the most recent data first, so we invert it for chronological order
items.reverse()
df = pd.DataFrame(items, columns=[
"timestamp", "open", "high", "low", "close", "volume", "quoteVolume"
])
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
df[["open", "high", "low", "close", "volume", "quoteVolume"]] = df[
["open", "high", "low", "close", "volume", "quoteVolume"]
].astype(float)
logging.info(f"Fetched {len(df)} rows for {symbol}.")
return df, ""
except Exception as e:
err_msg = f"Error fetching candles for {symbol}: {e}"
logging.error(err_msg)
return pd.DataFrame(), err_msg
########################################
# Prophet pipeline
########################################
def prepare_data_for_prophet(df):
"""
Convert the DataFrame to a Prophet-compatible format.
"""
if df.empty:
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="H"):
"""
Train a Prophet model and forecast.
"""
if df_prophet.empty:
logging.warning("Prophet input is empty, no forecast can be generated.")
return pd.DataFrame(), "No data to forecast."
try:
model = Prophet()
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
logging.error(f"Forecast error: {e}")
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq):
"""
Do the forecast, then slice out the new/future rows.
"""
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(df_prophet, forecast_steps, freq)
if err:
return pd.DataFrame(), err
# Only keep the newly generated future portion
future_only = full_forecast.iloc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
########################################
# Main Gradio logic
########################################
def predict(symbol, timeframe, forecast_steps):
"""
Orchestrate candle fetch + prophet forecast.
"""
# Convert user timeframe to OKX bar param
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
# Let’s fetch 500 candles
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, limit=500)
if err:
return pd.DataFrame(), err
df_prophet = prepare_data_for_prophet(df_raw)
# We guess frequency from timeframe. If timeframe is "1h", we'll do freq="H" in Prophet, etc.
# We'll do a simple mapping here:
freq = "H" if "h" in timeframe.lower() else "D" # e.g. "1h" -> "H", "1d" -> "D"
future_df, err2 = prophet_wrapper(df_prophet, forecast_steps, freq)
if err2:
return pd.DataFrame(), err2
return future_df, ""
def display_forecast(symbol, timeframe, forecast_steps):
"""
For the Gradio UI, returns forecast or error message.
"""
logging.info(f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}")
forecast_df, error = predict(symbol, timeframe, forecast_steps)
if error:
return f"Error: {error}"
return forecast_df
def main():
# Fetch OKX symbols
symbols = fetch_okx_symbols()
if not symbols or "Error" in symbols[0]:
symbols = ["No symbols available"]
with gr.Blocks() as demo:
gr.Markdown("# OKX Price Forecasting with Prophet")
gr.Markdown(
"This app uses OKX's spot market candles to predict future price movements. "
"Select a symbol and timeframe, specify forecast steps, then click 'Generate Forecast'. "
"No proxies or special access required."
)
symbol_dd = gr.Dropdown(
label="Symbol",
choices=symbols,
value=symbols[0] if symbols else None
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
value="1h"
)
steps_slider = gr.Slider(
label="Forecast Steps (hours/days depending on timeframe)",
minimum=1,
maximum=100,
value=10
)
forecast_btn = gr.Button("Generate Forecast")
output_df = gr.Dataframe(
label="Future Forecast Only",
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
)
forecast_btn.click(
fn=display_forecast,
inputs=[symbol_dd, timeframe_dd, steps_slider],
outputs=output_df
)
gr.Markdown(
"Looking for more automation? Check out this "
"[crypto trading bot](https://www.gunbot.com)."
)
return demo
if __name__ == "__main__":
app = main()
app.launch()
|