Spaces:
Running
Running
File size: 9,237 Bytes
5024af9 2a14d16 5024af9 2a14d16 5024af9 0ff9cc9 5024af9 f1bfa96 5024af9 0ff9cc9 2a14d16 0ff9cc9 5024af9 f1bfa96 5024af9 0ff9cc9 f1bfa96 0ff9cc9 5024af9 0ff9cc9 5024af9 0ff9cc9 5024af9 f1bfa96 5024af9 2a14d16 5024af9 f1bfa96 5024af9 2a14d16 f1bfa96 5024af9 2a14d16 5024af9 f1bfa96 5024af9 2a14d16 5024af9 b6f2f3c 5024af9 2a14d16 5024af9 f1bfa96 5024af9 2a14d16 5024af9 2a14d16 5024af9 2a14d16 5024af9 2a14d16 5024af9 2a14d16 5024af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
import plotly.graph_objs as go
logging.basicConfig(level=logging.INFO)
########################################
# OKX endpoints & utility
########################################
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H",
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
def fetch_okx_symbols():
"""
Fetch the list of symbols (instId) from OKX Spot tickers.
"""
logging.info("Fetching symbols from OKX Spot tickers...")
try:
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
logging.error(f"Non-zero code returned: {json_data}")
return ["Error: Could not fetch OKX symbols"]
data = json_data.get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
if not symbols:
logging.warning("No spot symbols found.")
return ["Error: No spot symbols found."]
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
return sorted(symbols)
except Exception as e:
logging.error(f"Error fetching OKX symbols: {e}")
return [f"Error: {str(e)}"]
def fetch_okx_candles(symbol, timeframe="1H", limit=500):
"""
Fetch historical candle data for a symbol from OKX.
Data columns (9):
[ts, o, h, l, c, vol, volCcy, volCcyQuote, confirm]
"""
logging.info(f"Fetching {limit} candles for {symbol} @ {timeframe} from OKX...")
params = {
"instId": symbol,
"bar": timeframe,
"limit": limit
}
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
logging.error(msg)
return pd.DataFrame(), msg
items = json_data.get("data", [])
if not items:
warning_msg = f"No candle data returned for {symbol}."
logging.warning(warning_msg)
return pd.DataFrame(), warning_msg
# Reverse to chronological (OKX returns newest first)
items.reverse()
columns = [
"ts", "o", "h", "l", "c", "vol",
"volCcy", "volCcyQuote", "confirm"
]
df = pd.DataFrame(items, columns=columns)
df.rename(columns={
"ts": "timestamp",
"o": "open",
"h": "high",
"l": "low",
"c": "close"
}, inplace=True)
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
df[numeric_cols] = df[numeric_cols].astype(float)
logging.info(f"Fetched {len(df)} rows for {symbol}.")
return df, ""
except Exception as e:
err_msg = f"Error fetching candles for {symbol}: {e}"
logging.error(err_msg)
return pd.DataFrame(), err_msg
########################################
# Prophet pipeline
########################################
def prepare_data_for_prophet(df):
"""
Convert the DataFrame to a Prophet-compatible format.
"""
if df.empty:
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="h"):
"""
Train a Prophet model and forecast.
Using 'h' or 'd' for freq to avoid future deprecation warnings in pandas.
"""
if df_prophet.empty:
logging.warning("Prophet input is empty, no forecast can be generated.")
return pd.DataFrame(), "No data to forecast."
try:
model = Prophet()
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
logging.error(f"Forecast error: {e}")
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq):
"""
Forecast, then slice out only the new/future rows using .loc.
"""
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(df_prophet, forecast_steps, freq)
if err:
return pd.DataFrame(), err
# Only future portion
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
########################################
# Plot helper
########################################
def create_line_plot(forecast_df):
"""
Create a Plotly line chart with the future forecast (ds vs yhat).
We'll shade the region between yhat_lower and yhat_upper.
"""
if forecast_df.empty:
return go.Figure() # empty figure if no data
fig = go.Figure()
# Main forecast
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat"],
mode="lines",
name="Forecast",
line=dict(color="blue")
))
# Lower bound
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_lower"],
fill=None,
mode="lines",
line=dict(width=0, color="lightblue"),
name="Lower"
))
# Upper bound
fig.add_trace(go.Scatter(
x=forecast_df["ds"],
y=forecast_df["yhat_upper"],
fill="tonexty", # fill area between upper & lower
mode="lines",
line=dict(width=0, color="lightblue"),
name="Upper"
))
fig.update_layout(
title="Forecasted Prices",
xaxis_title="Timestamp",
yaxis_title="Price",
hovermode="x"
)
return fig
########################################
# Main Gradio logic
########################################
def predict(symbol, timeframe, forecast_steps):
"""
Orchestrate candle fetch + prophet forecast.
"""
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, limit=500)
if err:
return pd.DataFrame(), err
df_prophet = prepare_data_for_prophet(df_raw)
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(df_prophet, forecast_steps, freq)
if err2:
return pd.DataFrame(), err2
return future_df, ""
def display_forecast(symbol, timeframe, forecast_steps):
logging.info(f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}")
forecast_df, error = predict(symbol, timeframe, forecast_steps)
if error:
return None, f"Error: {error}"
fig = create_line_plot(forecast_df)
return fig, forecast_df
def main():
# Fetch OKX symbols
symbols = fetch_okx_symbols()
if not symbols or "Error" in symbols[0]:
symbols = ["No symbols available"]
with gr.Blocks() as demo:
gr.Markdown("# Crypto Price Forecasting with Prophet")
gr.Markdown(
"This app gathers recent candles from OKX's spot market and makes short-term predictions using Prophet. "
"You can pick any available symbol and timeframe, then see a future forecast (no historical lines) in a line chart and table."
)
symbol_dd = gr.Dropdown(
label="Symbol",
choices=symbols,
value=symbols[0] if symbols else None
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
value="1h"
)
steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=10
)
forecast_btn = gr.Button("Generate Forecast")
# First output: the line chart
chart_output = gr.Plot(label="Forecast Chart")
# Second output: the forecast dataframe
df_output = gr.Dataframe(
label="Forecast (Future Only)",
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
)
# We return two items from display_forecast: (chart, df)
forecast_btn.click(
fn=display_forecast,
inputs=[symbol_dd, timeframe_dd, steps_slider],
outputs=[chart_output, df_output]
)
gr.Markdown(
"For automated trading tools, consider Gunbot as your next [crypto trading bot](https://www.gunbot.com)."
)
return demo
if __name__ == "__main__":
app = main()
app.launch()
|