CryptoVision / app.py
kapr's picture
Update app.py
f1bfa96 verified
raw
history blame
7.88 kB
import gradio as gr
import pandas as pd
import requests
from prophet import Prophet
import logging
logging.basicConfig(level=logging.INFO)
########################################
# OKX endpoints & utility
########################################
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
TIMEFRAME_MAPPING = {
"1m": "1m",
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "1H", # OKX expects '1H'
"2h": "2H",
"4h": "4H",
"6h": "6H",
"12h": "12H",
"1d": "1D",
"1w": "1W",
}
def fetch_okx_symbols():
"""
Fetch the list of symbols (instId) from OKX Spot tickers.
"""
logging.info("Fetching symbols from OKX Spot tickers...")
try:
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
logging.error(f"Non-zero code returned: {json_data}")
return ["Error: Could not fetch OKX symbols"]
data = json_data.get("data", [])
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
if not symbols:
logging.warning("No spot symbols found.")
return ["Error: No spot symbols found."]
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
return sorted(symbols)
except Exception as e:
logging.error(f"Error fetching OKX symbols: {e}")
return [f"Error: {str(e)}"]
def fetch_okx_candles(symbol, timeframe="1H", limit=500):
"""
Fetch historical candle data for a symbol from OKX.
OKX data columns:
[ts, o, h, l, c, vol, volCcy, volCcyQuote, confirm]
"""
logging.info(f"Fetching {limit} candles for {symbol} @ {timeframe} from OKX...")
params = {
"instId": symbol,
"bar": timeframe,
"limit": limit
}
try:
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
resp.raise_for_status()
json_data = resp.json()
if json_data.get("code") != "0":
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
logging.error(msg)
return pd.DataFrame(), msg
items = json_data.get("data", [])
if not items:
warning_msg = f"No candle data returned for {symbol}."
logging.warning(warning_msg)
return pd.DataFrame(), warning_msg
# Reverse to chronological (OKX returns newest first)
items.reverse()
columns = [
"ts", "o", "h", "l", "c", "vol",
"volCcy", "volCcyQuote", "confirm"
]
df = pd.DataFrame(items, columns=columns)
df.rename(columns={
"ts": "timestamp",
"o": "open",
"h": "high",
"l": "low",
"c": "close"
}, inplace=True)
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
df[numeric_cols] = df[numeric_cols].astype(float)
logging.info(f"Fetched {len(df)} rows for {symbol}.")
return df, ""
except Exception as e:
err_msg = f"Error fetching candles for {symbol}: {e}"
logging.error(err_msg)
return pd.DataFrame(), err_msg
########################################
# Prophet pipeline
########################################
def prepare_data_for_prophet(df):
"""
Convert the DataFrame to a Prophet-compatible format.
"""
if df.empty:
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
return pd.DataFrame(columns=["ds", "y"])
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
return df_prophet[["ds", "y"]]
def prophet_forecast(df_prophet, periods=10, freq="h"):
"""
Train a Prophet model and forecast.
Using 'h' or 'd' to avoid the future deprecation warning in pandas.
"""
if df_prophet.empty:
logging.warning("Prophet input is empty, no forecast can be generated.")
return pd.DataFrame(), "No data to forecast."
try:
model = Prophet()
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods, freq=freq)
forecast = model.predict(future)
return forecast, ""
except Exception as e:
logging.error(f"Forecast error: {e}")
return pd.DataFrame(), f"Forecast error: {e}"
def prophet_wrapper(df_prophet, forecast_steps, freq):
"""
Forecast, then slice out only the new/future rows using .loc.
"""
if len(df_prophet) < 10:
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
full_forecast, err = prophet_forecast(df_prophet, forecast_steps, freq)
if err:
return pd.DataFrame(), err
# Slice from len(df_prophet) onward, for columns ds, yhat, yhat_lower, yhat_upper
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
return future_only, ""
########################################
# Main Gradio logic
########################################
def predict(symbol, timeframe, forecast_steps):
"""
Orchestrate candle fetch + prophet forecast.
"""
# Convert user timeframe to OKX bar param
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, limit=500)
if err:
return pd.DataFrame(), err
df_prophet = prepare_data_for_prophet(df_raw)
# If timeframe string has 'h', use 'h' for freq. Else use 'd'
freq = "h" if "h" in timeframe.lower() else "d"
future_df, err2 = prophet_wrapper(df_prophet, forecast_steps, freq)
if err2:
return pd.DataFrame(), err2
return future_df, ""
def display_forecast(symbol, timeframe, forecast_steps):
"""
For the Gradio UI, returns forecast or error message.
"""
logging.info(f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}")
forecast_df, error = predict(symbol, timeframe, forecast_steps)
if error:
return f"Error: {error}"
return forecast_df
def main():
# Fetch OKX symbols
symbols = fetch_okx_symbols()
if not symbols or "Error" in symbols[0]:
symbols = ["No symbols available"]
with gr.Blocks() as demo:
gr.Markdown("# OKX Price Forecasting with Prophet")
gr.Markdown(
"This app pulls spot-market candles from OKX, trains a simple Prophet model, "
"and displays only future predictions. If you see errors or no data, try another symbol/timeframe."
)
symbol_dd = gr.Dropdown(
label="Symbol",
choices=symbols,
value=symbols[0] if symbols else None
)
timeframe_dd = gr.Dropdown(
label="Timeframe",
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
value="1h"
)
steps_slider = gr.Slider(
label="Forecast Steps",
minimum=1,
maximum=100,
value=10
)
forecast_btn = gr.Button("Generate Forecast")
output_df = gr.Dataframe(
label="Future Forecast Only",
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
)
forecast_btn.click(
fn=display_forecast,
inputs=[symbol_dd, timeframe_dd, steps_slider],
outputs=output_df
)
gr.Markdown(
"Need more tools? Check out this "
"[crypto trading bot](https://www.gunbot.com)."
)
return demo
if __name__ == "__main__":
app = main()
app.launch()