Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import requests
|
|
4 |
from prophet import Prophet
|
5 |
import logging
|
6 |
import plotly.graph_objs as go
|
|
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
@@ -14,6 +15,7 @@ logging.basicConfig(level=logging.INFO)
|
|
14 |
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
|
15 |
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
|
16 |
|
|
|
17 |
TIMEFRAME_MAPPING = {
|
18 |
"1m": "1m",
|
19 |
"5m": "5m",
|
@@ -28,9 +30,13 @@ TIMEFRAME_MAPPING = {
|
|
28 |
"1w": "1W",
|
29 |
}
|
30 |
|
|
|
|
|
|
|
|
|
31 |
def fetch_okx_symbols():
|
32 |
"""
|
33 |
-
Fetch
|
34 |
"""
|
35 |
logging.info("Fetching symbols from OKX Spot tickers...")
|
36 |
try:
|
@@ -55,20 +61,28 @@ def fetch_okx_symbols():
|
|
55 |
logging.error(f"Error fetching OKX symbols: {e}")
|
56 |
return [f"Error: {str(e)}"]
|
57 |
|
58 |
-
def fetch_okx_candles(symbol, timeframe="1H", limit=500):
|
59 |
-
"""
|
60 |
-
Fetch historical candle data for a symbol from OKX.
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
"""
|
65 |
-
logging.info(f"Fetching {limit} candles for {symbol} @ {timeframe} from OKX...")
|
66 |
params = {
|
67 |
"instId": symbol,
|
68 |
"bar": timeframe,
|
69 |
"limit": limit
|
70 |
}
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
try:
|
73 |
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
|
74 |
resp.raise_for_status()
|
@@ -81,13 +95,9 @@ def fetch_okx_candles(symbol, timeframe="1H", limit=500):
|
|
81 |
|
82 |
items = json_data.get("data", [])
|
83 |
if not items:
|
84 |
-
|
85 |
-
logging.warning(warning_msg)
|
86 |
-
return pd.DataFrame(), warning_msg
|
87 |
-
|
88 |
-
# Reverse to chronological (OKX returns newest first)
|
89 |
-
items.reverse()
|
90 |
|
|
|
91 |
columns = [
|
92 |
"ts", "o", "h", "l", "c", "vol",
|
93 |
"volCcy", "volCcyQuote", "confirm"
|
@@ -100,45 +110,112 @@ def fetch_okx_candles(symbol, timeframe="1H", limit=500):
|
|
100 |
"l": "low",
|
101 |
"c": "close"
|
102 |
}, inplace=True)
|
103 |
-
|
104 |
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
105 |
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
|
106 |
df[numeric_cols] = df[numeric_cols].astype(float)
|
107 |
|
108 |
-
logging.info(f"Fetched {len(df)} rows for {symbol}.")
|
109 |
return df, ""
|
110 |
-
|
111 |
except Exception as e:
|
112 |
-
err_msg = f"Error fetching candles for {symbol}: {e}"
|
113 |
logging.error(err_msg)
|
114 |
return pd.DataFrame(), err_msg
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
########################################
|
117 |
# Prophet pipeline
|
118 |
########################################
|
119 |
|
120 |
def prepare_data_for_prophet(df):
|
121 |
"""
|
122 |
-
Convert
|
123 |
"""
|
124 |
if df.empty:
|
125 |
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
|
126 |
return pd.DataFrame(columns=["ds", "y"])
|
127 |
-
|
128 |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
129 |
return df_prophet[["ds", "y"]]
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
"""
|
133 |
-
Train a Prophet model
|
134 |
-
|
|
|
|
|
135 |
"""
|
136 |
if df_prophet.empty:
|
137 |
-
logging.warning("
|
138 |
return pd.DataFrame(), "No data to forecast."
|
139 |
|
140 |
try:
|
141 |
-
model = Prophet(
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
model.fit(df_prophet)
|
143 |
future = model.make_future_dataframe(periods=periods, freq=freq)
|
144 |
forecast = model.predict(future)
|
@@ -147,35 +224,53 @@ def prophet_forecast(df_prophet, periods=10, freq="h"):
|
|
147 |
logging.error(f"Forecast error: {e}")
|
148 |
return pd.DataFrame(), f"Forecast error: {e}"
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
"""
|
152 |
-
|
153 |
"""
|
154 |
if len(df_prophet) < 10:
|
155 |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
156 |
|
157 |
-
full_forecast, err = prophet_forecast(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
if err:
|
159 |
return pd.DataFrame(), err
|
160 |
|
161 |
-
#
|
162 |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
163 |
return future_only, ""
|
164 |
|
|
|
165 |
########################################
|
166 |
# Plot helper
|
167 |
########################################
|
168 |
|
169 |
def create_line_plot(forecast_df):
|
170 |
"""
|
171 |
-
|
172 |
-
We'll shade the region between yhat_lower and yhat_upper.
|
173 |
"""
|
174 |
if forecast_df.empty:
|
175 |
-
return go.Figure() # empty figure
|
176 |
|
177 |
fig = go.Figure()
|
178 |
-
# Main forecast
|
179 |
fig.add_trace(go.Scatter(
|
180 |
x=forecast_df["ds"],
|
181 |
y=forecast_df["yhat"],
|
@@ -198,7 +293,7 @@ def create_line_plot(forecast_df):
|
|
198 |
fig.add_trace(go.Scatter(
|
199 |
x=forecast_df["ds"],
|
200 |
y=forecast_df["yhat_upper"],
|
201 |
-
fill="tonexty",
|
202 |
mode="lines",
|
203 |
line=dict(width=0, color="lightblue"),
|
204 |
name="Upper"
|
@@ -212,36 +307,91 @@ def create_line_plot(forecast_df):
|
|
212 |
)
|
213 |
return fig
|
214 |
|
|
|
215 |
########################################
|
216 |
# Main Gradio logic
|
217 |
########################################
|
218 |
|
219 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
"""
|
221 |
-
|
|
|
|
|
|
|
222 |
"""
|
|
|
223 |
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
224 |
-
|
|
|
|
|
225 |
if err:
|
226 |
return pd.DataFrame(), err
|
227 |
|
228 |
df_prophet = prepare_data_for_prophet(df_raw)
|
|
|
|
|
229 |
freq = "h" if "h" in timeframe.lower() else "d"
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
if err2:
|
232 |
return pd.DataFrame(), err2
|
233 |
|
234 |
return future_df, ""
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
if error:
|
240 |
return None, f"Error: {error}"
|
241 |
|
242 |
fig = create_line_plot(forecast_df)
|
243 |
return fig, forecast_df
|
244 |
|
|
|
245 |
def main():
|
246 |
# Fetch OKX symbols
|
247 |
symbols = fetch_okx_symbols()
|
@@ -249,12 +399,15 @@ def main():
|
|
249 |
symbols = ["No symbols available"]
|
250 |
|
251 |
with gr.Blocks() as demo:
|
252 |
-
gr.Markdown("#
|
253 |
gr.Markdown(
|
254 |
-
"This
|
255 |
-
"
|
|
|
|
|
256 |
)
|
257 |
|
|
|
258 |
symbol_dd = gr.Dropdown(
|
259 |
label="Symbol",
|
260 |
choices=symbols,
|
@@ -265,37 +418,71 @@ def main():
|
|
265 |
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
|
266 |
value="1h"
|
267 |
)
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
label="Forecast Steps",
|
270 |
minimum=1,
|
271 |
maximum=100,
|
272 |
value=10
|
273 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
forecast_btn = gr.Button("Generate Forecast")
|
275 |
|
276 |
-
#
|
277 |
chart_output = gr.Plot(label="Forecast Chart")
|
278 |
-
|
279 |
-
# Second output: the forecast dataframe
|
280 |
df_output = gr.Dataframe(
|
281 |
label="Forecast (Future Only)",
|
282 |
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
|
283 |
)
|
284 |
|
285 |
-
#
|
286 |
forecast_btn.click(
|
287 |
fn=display_forecast,
|
288 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
outputs=[chart_output, df_output]
|
290 |
)
|
291 |
|
|
|
292 |
gr.Markdown(
|
293 |
"For automated trading tools, consider Gunbot as your next [crypto trading bot](https://www.gunbot.com)."
|
294 |
)
|
295 |
|
296 |
-
|
297 |
return demo
|
298 |
|
|
|
299 |
if __name__ == "__main__":
|
300 |
app = main()
|
301 |
app.launch()
|
|
|
4 |
from prophet import Prophet
|
5 |
import logging
|
6 |
import plotly.graph_objs as go
|
7 |
+
import math
|
8 |
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
|
|
15 |
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
|
16 |
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
|
17 |
|
18 |
+
# Allowed bar intervals on OKX, maximum 300 records at a time
|
19 |
TIMEFRAME_MAPPING = {
|
20 |
"1m": "1m",
|
21 |
"5m": "5m",
|
|
|
30 |
"1w": "1W",
|
31 |
}
|
32 |
|
33 |
+
########################################
|
34 |
+
# Functions to fetch data from OKX
|
35 |
+
########################################
|
36 |
+
|
37 |
def fetch_okx_symbols():
|
38 |
"""
|
39 |
+
Fetch spot symbols from OKX.
|
40 |
"""
|
41 |
logging.info("Fetching symbols from OKX Spot tickers...")
|
42 |
try:
|
|
|
61 |
logging.error(f"Error fetching OKX symbols: {e}")
|
62 |
return [f"Error: {str(e)}"]
|
63 |
|
|
|
|
|
|
|
64 |
|
65 |
+
def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
|
66 |
+
"""
|
67 |
+
Fetch up to `limit` candles (max 300) for the given symbol/timeframe.
|
68 |
+
Optionally use `after` or `before` to page through older or newer data.
|
69 |
+
|
70 |
+
OKX returns newest data first. The result here is also newest first.
|
71 |
+
We'll reorder or combine them later as needed.
|
72 |
"""
|
|
|
73 |
params = {
|
74 |
"instId": symbol,
|
75 |
"bar": timeframe,
|
76 |
"limit": limit
|
77 |
}
|
78 |
+
if after is not None:
|
79 |
+
# fetch records older than 'after'
|
80 |
+
params["after"] = str(after)
|
81 |
+
if before is not None:
|
82 |
+
# fetch records newer than 'before'
|
83 |
+
params["before"] = str(before)
|
84 |
+
|
85 |
+
logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}, after={after}, before={before}")
|
86 |
try:
|
87 |
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
|
88 |
resp.raise_for_status()
|
|
|
95 |
|
96 |
items = json_data.get("data", [])
|
97 |
if not items:
|
98 |
+
return pd.DataFrame(), ""
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# items are newest first. We'll parse them in that order, then we can reverse later.
|
101 |
columns = [
|
102 |
"ts", "o", "h", "l", "c", "vol",
|
103 |
"volCcy", "volCcyQuote", "confirm"
|
|
|
110 |
"l": "low",
|
111 |
"c": "close"
|
112 |
}, inplace=True)
|
|
|
113 |
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
114 |
numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"]
|
115 |
df[numeric_cols] = df[numeric_cols].astype(float)
|
116 |
|
|
|
117 |
return df, ""
|
|
|
118 |
except Exception as e:
|
119 |
+
err_msg = f"Error fetching candles chunk for {symbol}: {e}"
|
120 |
logging.error(err_msg)
|
121 |
return pd.DataFrame(), err_msg
|
122 |
|
123 |
+
|
124 |
+
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
125 |
+
"""
|
126 |
+
Fetch ~`total` candles by chaining multiple requests of up to 300 each.
|
127 |
+
We'll get the newest data first, then request older data in loops,
|
128 |
+
because 'after' param returns records older than the provided ts.
|
129 |
+
|
130 |
+
Returns df in chronological order (oldest -> newest).
|
131 |
+
"""
|
132 |
+
logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe} (in multiple chunks).")
|
133 |
+
|
134 |
+
# We'll do enough calls to get at least `total` data points, or break if no more data.
|
135 |
+
calls_needed = math.ceil(total / 300.0)
|
136 |
+
all_data = []
|
137 |
+
after_ts = None # We'll track the earliest timestamp we see, then pass "after" to go older
|
138 |
+
|
139 |
+
for _ in range(calls_needed):
|
140 |
+
df_chunk, err = fetch_okx_candles_chunk(
|
141 |
+
symbol, timeframe, limit=300, after=after_ts
|
142 |
+
)
|
143 |
+
if err:
|
144 |
+
return pd.DataFrame(), err
|
145 |
+
if df_chunk.empty:
|
146 |
+
# No more data
|
147 |
+
break
|
148 |
+
|
149 |
+
# df_chunk is newest first, so the last row is the earliest in that chunk.
|
150 |
+
earliest_ts = df_chunk["timestamp"].iloc[-1]
|
151 |
+
# We'll keep chaining to older data by passing after = earliest_ts-1 (in ms).
|
152 |
+
# But we need that as a Unix milliseconds integer.
|
153 |
+
after_ts = int(earliest_ts.timestamp() * 1000 - 1)
|
154 |
+
|
155 |
+
# Add this chunk to the big list
|
156 |
+
all_data.append(df_chunk)
|
157 |
+
|
158 |
+
if len(df_chunk) < 300:
|
159 |
+
# We didn't get a full chunk, means no more older data available
|
160 |
+
break
|
161 |
+
|
162 |
+
# Concatenate everything
|
163 |
+
if not all_data:
|
164 |
+
logging.info("No data returned overall.")
|
165 |
+
return pd.DataFrame(), "No data returned."
|
166 |
+
|
167 |
+
df_all = pd.concat(all_data, ignore_index=True)
|
168 |
+
# Each chunk is newest first, so the entire df is a bunch of blocks newest->oldest blocks.
|
169 |
+
# Let's invert the final large df to chronological
|
170 |
+
df_all.sort_values(by="timestamp", inplace=True)
|
171 |
+
df_all.reset_index(drop=True, inplace=True)
|
172 |
+
logging.info(f"Fetched a total of {len(df_all)} rows for {symbol}.")
|
173 |
+
return df_all, ""
|
174 |
+
|
175 |
+
|
176 |
########################################
|
177 |
# Prophet pipeline
|
178 |
########################################
|
179 |
|
180 |
def prepare_data_for_prophet(df):
|
181 |
"""
|
182 |
+
Convert DataFrame to Prophet-compatible format: columns ds, y.
|
183 |
"""
|
184 |
if df.empty:
|
185 |
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
|
186 |
return pd.DataFrame(columns=["ds", "y"])
|
|
|
187 |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
188 |
return df_prophet[["ds", "y"]]
|
189 |
|
190 |
+
|
191 |
+
def prophet_forecast(
|
192 |
+
df_prophet,
|
193 |
+
periods=10,
|
194 |
+
freq="h",
|
195 |
+
daily_seasonality=False,
|
196 |
+
weekly_seasonality=False,
|
197 |
+
yearly_seasonality=False,
|
198 |
+
seasonality_mode="additive",
|
199 |
+
changepoint_prior_scale=0.05,
|
200 |
+
):
|
201 |
"""
|
202 |
+
Train a Prophet model with various exposed settings:
|
203 |
+
- daily/weekly/yearly seasonality toggles
|
204 |
+
- seasonality_mode ("additive" or "multiplicative")
|
205 |
+
- changepoint_prior_scale (0.01 to ~10, controls overfitting)
|
206 |
"""
|
207 |
if df_prophet.empty:
|
208 |
+
logging.warning("No data for Prophet.")
|
209 |
return pd.DataFrame(), "No data to forecast."
|
210 |
|
211 |
try:
|
212 |
+
model = Prophet(
|
213 |
+
daily_seasonality=daily_seasonality,
|
214 |
+
weekly_seasonality=weekly_seasonality,
|
215 |
+
yearly_seasonality=yearly_seasonality,
|
216 |
+
seasonality_mode=seasonality_mode,
|
217 |
+
changepoint_prior_scale=changepoint_prior_scale,
|
218 |
+
)
|
219 |
model.fit(df_prophet)
|
220 |
future = model.make_future_dataframe(periods=periods, freq=freq)
|
221 |
forecast = model.predict(future)
|
|
|
224 |
logging.error(f"Forecast error: {e}")
|
225 |
return pd.DataFrame(), f"Forecast error: {e}"
|
226 |
|
227 |
+
|
228 |
+
def prophet_wrapper(
|
229 |
+
df_prophet,
|
230 |
+
forecast_steps,
|
231 |
+
freq,
|
232 |
+
daily_seasonality,
|
233 |
+
weekly_seasonality,
|
234 |
+
yearly_seasonality,
|
235 |
+
seasonality_mode,
|
236 |
+
changepoint_prior_scale,
|
237 |
+
):
|
238 |
"""
|
239 |
+
Run the forecast with user-chosen settings, then keep future (new) rows only.
|
240 |
"""
|
241 |
if len(df_prophet) < 10:
|
242 |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
243 |
|
244 |
+
full_forecast, err = prophet_forecast(
|
245 |
+
df_prophet,
|
246 |
+
periods=forecast_steps,
|
247 |
+
freq=freq,
|
248 |
+
daily_seasonality=daily_seasonality,
|
249 |
+
weekly_seasonality=weekly_seasonality,
|
250 |
+
yearly_seasonality=yearly_seasonality,
|
251 |
+
seasonality_mode=seasonality_mode,
|
252 |
+
changepoint_prior_scale=changepoint_prior_scale,
|
253 |
+
)
|
254 |
if err:
|
255 |
return pd.DataFrame(), err
|
256 |
|
257 |
+
# Future portion only: the new rows after the original data
|
258 |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
259 |
return future_only, ""
|
260 |
|
261 |
+
|
262 |
########################################
|
263 |
# Plot helper
|
264 |
########################################
|
265 |
|
266 |
def create_line_plot(forecast_df):
|
267 |
"""
|
268 |
+
Make a Plotly line chart from forecast.
|
|
|
269 |
"""
|
270 |
if forecast_df.empty:
|
271 |
+
return go.Figure() # empty figure
|
272 |
|
273 |
fig = go.Figure()
|
|
|
274 |
fig.add_trace(go.Scatter(
|
275 |
x=forecast_df["ds"],
|
276 |
y=forecast_df["yhat"],
|
|
|
293 |
fig.add_trace(go.Scatter(
|
294 |
x=forecast_df["ds"],
|
295 |
y=forecast_df["yhat_upper"],
|
296 |
+
fill="tonexty",
|
297 |
mode="lines",
|
298 |
line=dict(width=0, color="lightblue"),
|
299 |
name="Upper"
|
|
|
307 |
)
|
308 |
return fig
|
309 |
|
310 |
+
|
311 |
########################################
|
312 |
# Main Gradio logic
|
313 |
########################################
|
314 |
|
315 |
+
def predict(
|
316 |
+
symbol,
|
317 |
+
timeframe,
|
318 |
+
forecast_steps,
|
319 |
+
total_candles,
|
320 |
+
daily_seasonality,
|
321 |
+
weekly_seasonality,
|
322 |
+
yearly_seasonality,
|
323 |
+
seasonality_mode,
|
324 |
+
changepoint_prior_scale,
|
325 |
+
):
|
326 |
"""
|
327 |
+
1) Fetch `total_candles` historical data (in multiple parts if needed)
|
328 |
+
2) Convert to Prophet style
|
329 |
+
3) Run forecast with user-specified Prophet settings
|
330 |
+
4) Return future portion
|
331 |
"""
|
332 |
+
# Convert timeframe to OKX style
|
333 |
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
334 |
+
|
335 |
+
# This fetch can yield thousands of candles
|
336 |
+
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
|
337 |
if err:
|
338 |
return pd.DataFrame(), err
|
339 |
|
340 |
df_prophet = prepare_data_for_prophet(df_raw)
|
341 |
+
|
342 |
+
# Decide Prophet frequency
|
343 |
freq = "h" if "h" in timeframe.lower() else "d"
|
344 |
+
|
345 |
+
future_df, err2 = prophet_wrapper(
|
346 |
+
df_prophet,
|
347 |
+
forecast_steps,
|
348 |
+
freq,
|
349 |
+
daily_seasonality,
|
350 |
+
weekly_seasonality,
|
351 |
+
yearly_seasonality,
|
352 |
+
seasonality_mode,
|
353 |
+
changepoint_prior_scale,
|
354 |
+
)
|
355 |
if err2:
|
356 |
return pd.DataFrame(), err2
|
357 |
|
358 |
return future_df, ""
|
359 |
|
360 |
+
|
361 |
+
def display_forecast(
|
362 |
+
symbol,
|
363 |
+
timeframe,
|
364 |
+
forecast_steps,
|
365 |
+
total_candles,
|
366 |
+
daily_seasonality,
|
367 |
+
weekly_seasonality,
|
368 |
+
yearly_seasonality,
|
369 |
+
seasonality_mode,
|
370 |
+
changepoint_prior_scale,
|
371 |
+
):
|
372 |
+
logging.info(
|
373 |
+
f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}, "
|
374 |
+
f"total_candles={total_candles}, daily={daily_seasonality}, weekly={weekly_seasonality}, "
|
375 |
+
f"yearly={yearly_seasonality}, mode={seasonality_mode}, cps={changepoint_prior_scale}"
|
376 |
+
)
|
377 |
+
forecast_df, error = predict(
|
378 |
+
symbol,
|
379 |
+
timeframe,
|
380 |
+
forecast_steps,
|
381 |
+
total_candles,
|
382 |
+
daily_seasonality,
|
383 |
+
weekly_seasonality,
|
384 |
+
yearly_seasonality,
|
385 |
+
seasonality_mode,
|
386 |
+
changepoint_prior_scale,
|
387 |
+
)
|
388 |
if error:
|
389 |
return None, f"Error: {error}"
|
390 |
|
391 |
fig = create_line_plot(forecast_df)
|
392 |
return fig, forecast_df
|
393 |
|
394 |
+
|
395 |
def main():
|
396 |
# Fetch OKX symbols
|
397 |
symbols = fetch_okx_symbols()
|
|
|
399 |
symbols = ["No symbols available"]
|
400 |
|
401 |
with gr.Blocks() as demo:
|
402 |
+
gr.Markdown("# OKX Price Forecasting with Prophet")
|
403 |
gr.Markdown(
|
404 |
+
"This tool can gather thousands of historical data points from OKX's spot market "
|
405 |
+
"and make forecasts using Prophet. You can tweak Prophet's advanced settings or "
|
406 |
+
"increase the candle fetch size for potentially more accurate predictions.\n\n"
|
407 |
+
"Simply pick a symbol, timeframe, how many candles (max ~2000), and forecast steps."
|
408 |
)
|
409 |
|
410 |
+
# Input controls
|
411 |
symbol_dd = gr.Dropdown(
|
412 |
label="Symbol",
|
413 |
choices=symbols,
|
|
|
418 |
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
|
419 |
value="1h"
|
420 |
)
|
421 |
+
total_candles_slider = gr.Slider(
|
422 |
+
label="Total Candles to Fetch",
|
423 |
+
minimum=300,
|
424 |
+
maximum=3000,
|
425 |
+
value=2000,
|
426 |
+
step=100
|
427 |
+
)
|
428 |
+
forecast_steps_slider = gr.Slider(
|
429 |
label="Forecast Steps",
|
430 |
minimum=1,
|
431 |
maximum=100,
|
432 |
value=10
|
433 |
)
|
434 |
+
|
435 |
+
# Prophet advanced settings
|
436 |
+
daily_box = gr.Checkbox(label="Daily Seasonality", value=False)
|
437 |
+
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=False)
|
438 |
+
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
|
439 |
+
seasonality_mode_dd = gr.Dropdown(
|
440 |
+
label="Seasonality Mode",
|
441 |
+
choices=["additive", "multiplicative"],
|
442 |
+
value="additive"
|
443 |
+
)
|
444 |
+
changepoint_scale_slider = gr.Slider(
|
445 |
+
label="Changepoint Prior Scale (0.01 ~ 1.0)",
|
446 |
+
minimum=0.01,
|
447 |
+
maximum=1.0,
|
448 |
+
step=0.01,
|
449 |
+
value=0.05
|
450 |
+
)
|
451 |
+
|
452 |
forecast_btn = gr.Button("Generate Forecast")
|
453 |
|
454 |
+
# Outputs
|
455 |
chart_output = gr.Plot(label="Forecast Chart")
|
|
|
|
|
456 |
df_output = gr.Dataframe(
|
457 |
label="Forecast (Future Only)",
|
458 |
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
|
459 |
)
|
460 |
|
461 |
+
# Hook everything up
|
462 |
forecast_btn.click(
|
463 |
fn=display_forecast,
|
464 |
+
inputs=[
|
465 |
+
symbol_dd,
|
466 |
+
timeframe_dd,
|
467 |
+
forecast_steps_slider,
|
468 |
+
total_candles_slider,
|
469 |
+
daily_box,
|
470 |
+
weekly_box,
|
471 |
+
yearly_box,
|
472 |
+
seasonality_mode_dd,
|
473 |
+
changepoint_scale_slider,
|
474 |
+
],
|
475 |
outputs=[chart_output, df_output]
|
476 |
)
|
477 |
|
478 |
+
# You can choose any text variation you like here
|
479 |
gr.Markdown(
|
480 |
"For automated trading tools, consider Gunbot as your next [crypto trading bot](https://www.gunbot.com)."
|
481 |
)
|
482 |
|
|
|
483 |
return demo
|
484 |
|
485 |
+
|
486 |
if __name__ == "__main__":
|
487 |
app = main()
|
488 |
app.launch()
|