Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from prophet import Prophet
|
|
5 |
import logging
|
6 |
import plotly.graph_objs as go
|
7 |
import math
|
|
|
8 |
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
@@ -15,7 +16,6 @@ logging.basicConfig(level=logging.INFO)
|
|
15 |
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
|
16 |
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
|
17 |
|
18 |
-
# Allowed bar intervals on OKX, maximum 300 records at a time
|
19 |
TIMEFRAME_MAPPING = {
|
20 |
"1m": "1m",
|
21 |
"5m": "5m",
|
@@ -30,8 +30,59 @@ TIMEFRAME_MAPPING = {
|
|
30 |
"1w": "1W",
|
31 |
}
|
32 |
|
33 |
-
|
34 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
########################################
|
36 |
|
37 |
def fetch_okx_symbols():
|
@@ -46,43 +97,37 @@ def fetch_okx_symbols():
|
|
46 |
|
47 |
if json_data.get("code") != "0":
|
48 |
logging.error(f"Non-zero code returned: {json_data}")
|
49 |
-
return ["
|
50 |
|
51 |
data = json_data.get("data", [])
|
52 |
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
|
53 |
if not symbols:
|
54 |
-
|
55 |
-
return ["Error: No spot symbols found."]
|
56 |
|
|
|
|
|
|
|
|
|
|
|
57 |
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
|
58 |
-
return
|
59 |
|
60 |
except Exception as e:
|
61 |
logging.error(f"Error fetching OKX symbols: {e}")
|
62 |
-
return [
|
63 |
-
|
64 |
|
65 |
def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
|
66 |
-
"""
|
67 |
-
Fetch up to `limit` candles (max 300) for the given symbol/timeframe.
|
68 |
-
Optionally use `after` or `before` to page through older or newer data.
|
69 |
-
|
70 |
-
OKX returns newest data first. The result here is also newest first.
|
71 |
-
We'll reorder or combine them later as needed.
|
72 |
-
"""
|
73 |
params = {
|
74 |
"instId": symbol,
|
75 |
"bar": timeframe,
|
76 |
"limit": limit
|
77 |
}
|
78 |
if after is not None:
|
79 |
-
# fetch records older than 'after'
|
80 |
params["after"] = str(after)
|
81 |
if before is not None:
|
82 |
-
# fetch records newer than 'before'
|
83 |
params["before"] = str(before)
|
84 |
|
85 |
-
logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}
|
86 |
try:
|
87 |
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
|
88 |
resp.raise_for_status()
|
@@ -97,11 +142,7 @@ def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=Non
|
|
97 |
if not items:
|
98 |
return pd.DataFrame(), ""
|
99 |
|
100 |
-
|
101 |
-
columns = [
|
102 |
-
"ts", "o", "h", "l", "c", "vol",
|
103 |
-
"volCcy", "volCcyQuote", "confirm"
|
104 |
-
]
|
105 |
df = pd.DataFrame(items, columns=columns)
|
106 |
df.rename(columns={
|
107 |
"ts": "timestamp",
|
@@ -121,20 +162,16 @@ def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=Non
|
|
121 |
return pd.DataFrame(), err_msg
|
122 |
|
123 |
|
|
|
124 |
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
125 |
"""
|
126 |
-
Fetch
|
127 |
-
We'll get the newest data first, then request older data in loops,
|
128 |
-
because 'after' param returns records older than the provided ts.
|
129 |
-
|
130 |
-
Returns df in chronological order (oldest -> newest).
|
131 |
"""
|
132 |
-
logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe}
|
133 |
|
134 |
-
# We'll do enough calls to get at least `total` data points, or break if no more data.
|
135 |
calls_needed = math.ceil(total / 300.0)
|
136 |
all_data = []
|
137 |
-
after_ts = None
|
138 |
|
139 |
for _ in range(calls_needed):
|
140 |
df_chunk, err = fetch_okx_candles_chunk(
|
@@ -143,51 +180,38 @@ def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
|
143 |
if err:
|
144 |
return pd.DataFrame(), err
|
145 |
if df_chunk.empty:
|
146 |
-
# No more data
|
147 |
break
|
148 |
|
149 |
-
# df_chunk is newest first, so the last row is the earliest in that chunk.
|
150 |
earliest_ts = df_chunk["timestamp"].iloc[-1]
|
151 |
-
# We'll keep chaining to older data by passing after = earliest_ts-1 (in ms).
|
152 |
-
# But we need that as a Unix milliseconds integer.
|
153 |
after_ts = int(earliest_ts.timestamp() * 1000 - 1)
|
154 |
-
|
155 |
-
# Add this chunk to the big list
|
156 |
all_data.append(df_chunk)
|
157 |
|
158 |
if len(df_chunk) < 300:
|
159 |
-
# We didn't get a full chunk, means no more older data available
|
160 |
break
|
161 |
|
162 |
-
# Concatenate everything
|
163 |
if not all_data:
|
164 |
-
logging.info("No data returned overall.")
|
165 |
return pd.DataFrame(), "No data returned."
|
166 |
|
167 |
df_all = pd.concat(all_data, ignore_index=True)
|
168 |
-
# Each chunk is newest first, so the entire df is a bunch of blocks newest->oldest blocks.
|
169 |
-
# Let's invert the final large df to chronological
|
170 |
df_all.sort_values(by="timestamp", inplace=True)
|
171 |
df_all.reset_index(drop=True, inplace=True)
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
return df_all, ""
|
174 |
|
175 |
-
|
176 |
########################################
|
177 |
-
# Prophet
|
178 |
########################################
|
179 |
|
180 |
def prepare_data_for_prophet(df):
|
181 |
-
"""
|
182 |
-
Convert DataFrame to Prophet-compatible format: columns ds, y.
|
183 |
-
"""
|
184 |
if df.empty:
|
185 |
-
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
|
186 |
return pd.DataFrame(columns=["ds", "y"])
|
187 |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
188 |
return df_prophet[["ds", "y"]]
|
189 |
|
190 |
-
|
191 |
def prophet_forecast(
|
192 |
df_prophet,
|
193 |
periods=10,
|
@@ -198,15 +222,8 @@ def prophet_forecast(
|
|
198 |
seasonality_mode="additive",
|
199 |
changepoint_prior_scale=0.05,
|
200 |
):
|
201 |
-
"""
|
202 |
-
Train a Prophet model with various exposed settings:
|
203 |
-
- daily/weekly/yearly seasonality toggles
|
204 |
-
- seasonality_mode ("additive" or "multiplicative")
|
205 |
-
- changepoint_prior_scale (0.01 to ~10, controls overfitting)
|
206 |
-
"""
|
207 |
if df_prophet.empty:
|
208 |
-
|
209 |
-
return pd.DataFrame(), "No data to forecast."
|
210 |
|
211 |
try:
|
212 |
model = Prophet(
|
@@ -225,6 +242,8 @@ def prophet_forecast(
|
|
225 |
return pd.DataFrame(), f"Forecast error: {e}"
|
226 |
|
227 |
|
|
|
|
|
228 |
def prophet_wrapper(
|
229 |
df_prophet,
|
230 |
forecast_steps,
|
@@ -235,9 +254,6 @@ def prophet_wrapper(
|
|
235 |
seasonality_mode,
|
236 |
changepoint_prior_scale,
|
237 |
):
|
238 |
-
"""
|
239 |
-
Run the forecast with user-chosen settings, then keep future (new) rows only.
|
240 |
-
"""
|
241 |
if len(df_prophet) < 10:
|
242 |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
243 |
|
@@ -254,21 +270,16 @@ def prophet_wrapper(
|
|
254 |
if err:
|
255 |
return pd.DataFrame(), err
|
256 |
|
257 |
-
# Future portion only: the new rows after the original data
|
258 |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
259 |
return future_only, ""
|
260 |
|
261 |
-
|
262 |
########################################
|
263 |
-
#
|
264 |
########################################
|
265 |
|
266 |
-
def
|
267 |
-
"""
|
268 |
-
Make a Plotly line chart from forecast.
|
269 |
-
"""
|
270 |
if forecast_df.empty:
|
271 |
-
return go.Figure()
|
272 |
|
273 |
fig = go.Figure()
|
274 |
fig.add_trace(go.Scatter(
|
@@ -276,40 +287,45 @@ def create_line_plot(forecast_df):
|
|
276 |
y=forecast_df["yhat"],
|
277 |
mode="lines",
|
278 |
name="Forecast",
|
279 |
-
line=dict(color="blue")
|
280 |
))
|
281 |
|
282 |
-
# Lower bound
|
283 |
fig.add_trace(go.Scatter(
|
284 |
x=forecast_df["ds"],
|
285 |
y=forecast_df["yhat_lower"],
|
286 |
fill=None,
|
287 |
mode="lines",
|
288 |
-
line=dict(width=0
|
289 |
-
|
|
|
290 |
))
|
291 |
|
292 |
-
# Upper bound
|
293 |
fig.add_trace(go.Scatter(
|
294 |
x=forecast_df["ds"],
|
295 |
y=forecast_df["yhat_upper"],
|
296 |
fill="tonexty",
|
297 |
mode="lines",
|
298 |
-
line=dict(width=0
|
299 |
-
name="Upper"
|
300 |
))
|
301 |
|
302 |
fig.update_layout(
|
303 |
-
title="
|
304 |
-
xaxis_title="
|
305 |
yaxis_title="Price",
|
306 |
-
hovermode="x"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
)
|
308 |
return fig
|
309 |
|
310 |
-
|
311 |
########################################
|
312 |
-
# Main
|
313 |
########################################
|
314 |
|
315 |
def predict(
|
@@ -323,23 +339,12 @@ def predict(
|
|
323 |
seasonality_mode,
|
324 |
changepoint_prior_scale,
|
325 |
):
|
326 |
-
"""
|
327 |
-
1) Fetch `total_candles` historical data (in multiple parts if needed)
|
328 |
-
2) Convert to Prophet style
|
329 |
-
3) Run forecast with user-specified Prophet settings
|
330 |
-
4) Return future portion
|
331 |
-
"""
|
332 |
-
# Convert timeframe to OKX style
|
333 |
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
334 |
-
|
335 |
-
# This fetch can yield thousands of candles
|
336 |
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
|
337 |
if err:
|
338 |
-
return pd.DataFrame(), err
|
339 |
|
340 |
df_prophet = prepare_data_for_prophet(df_raw)
|
341 |
-
|
342 |
-
# Decide Prophet frequency
|
343 |
freq = "h" if "h" in timeframe.lower() else "d"
|
344 |
|
345 |
future_df, err2 = prophet_wrapper(
|
@@ -353,9 +358,10 @@ def predict(
|
|
353 |
changepoint_prior_scale,
|
354 |
)
|
355 |
if err2:
|
356 |
-
return pd.DataFrame(), err2
|
|
|
|
|
357 |
|
358 |
-
return future_df, ""
|
359 |
|
360 |
|
361 |
def display_forecast(
|
@@ -369,12 +375,9 @@ def display_forecast(
|
|
369 |
seasonality_mode,
|
370 |
changepoint_prior_scale,
|
371 |
):
|
372 |
-
logging.info(
|
373 |
-
|
374 |
-
|
375 |
-
f"yearly={yearly_seasonality}, mode={seasonality_mode}, cps={changepoint_prior_scale}"
|
376 |
-
)
|
377 |
-
forecast_df, error = predict(
|
378 |
symbol,
|
379 |
timeframe,
|
380 |
forecast_steps,
|
@@ -385,80 +388,95 @@ def display_forecast(
|
|
385 |
seasonality_mode,
|
386 |
changepoint_prior_scale,
|
387 |
)
|
|
|
388 |
if error:
|
389 |
-
return None, f"Error: {error}"
|
390 |
-
|
391 |
-
fig = create_line_plot(forecast_df)
|
392 |
-
return fig, forecast_df
|
393 |
|
|
|
|
|
|
|
|
|
394 |
|
395 |
def main():
|
396 |
-
# Fetch OKX symbols
|
397 |
symbols = fetch_okx_symbols()
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
gr.
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
-
# Hook everything up
|
462 |
forecast_btn.click(
|
463 |
fn=display_forecast,
|
464 |
inputs=[
|
@@ -472,17 +490,11 @@ def main():
|
|
472 |
seasonality_mode_dd,
|
473 |
changepoint_scale_slider,
|
474 |
],
|
475 |
-
outputs=[
|
476 |
-
)
|
477 |
-
|
478 |
-
# You can choose any text variation you like here
|
479 |
-
gr.Markdown(
|
480 |
-
"For automated trading tools, consider Gunbot as your next [crypto trading bot](https://www.gunbot.com)."
|
481 |
)
|
482 |
|
483 |
return demo
|
484 |
|
485 |
-
|
486 |
if __name__ == "__main__":
|
487 |
app = main()
|
488 |
-
app.launch()
|
|
|
5 |
import logging
|
6 |
import plotly.graph_objs as go
|
7 |
import math
|
8 |
+
import numpy as np
|
9 |
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
|
|
16 |
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
|
17 |
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
|
18 |
|
|
|
19 |
TIMEFRAME_MAPPING = {
|
20 |
"1m": "1m",
|
21 |
"5m": "5m",
|
|
|
30 |
"1w": "1W",
|
31 |
}
|
32 |
|
33 |
+
def calculate_technical_indicators(df):
|
34 |
+
# Calculate RSI
|
35 |
+
delta = df['close'].diff()
|
36 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
37 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
38 |
+
rs = gain / loss
|
39 |
+
df['RSI'] = 100 - (100 / (1 + rs))
|
40 |
+
|
41 |
+
# Calculate MACD
|
42 |
+
exp1 = df['close'].ewm(span=12, adjust=False).mean()
|
43 |
+
exp2 = df['close'].ewm(span=26, adjust=False).mean()
|
44 |
+
df['MACD'] = exp1 - exp2
|
45 |
+
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
|
46 |
+
|
47 |
+
# Calculate Bollinger Bands
|
48 |
+
df['MA20'] = df['close'].rolling(window=20).mean()
|
49 |
+
df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std()
|
50 |
+
df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std()
|
51 |
+
|
52 |
+
return df
|
53 |
+
|
54 |
+
def create_technical_charts(df):
|
55 |
+
# Price and Bollinger Bands
|
56 |
+
fig1 = go.Figure()
|
57 |
+
fig1.add_trace(go.Candlestick(
|
58 |
+
x=df['timestamp'],
|
59 |
+
open=df['open'],
|
60 |
+
high=df['high'],
|
61 |
+
low=df['low'],
|
62 |
+
close=df['close'],
|
63 |
+
name='Price'
|
64 |
+
))
|
65 |
+
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash')))
|
66 |
+
fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash')))
|
67 |
+
fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price')
|
68 |
+
|
69 |
+
# RSI
|
70 |
+
fig2 = go.Figure()
|
71 |
+
fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI'))
|
72 |
+
fig2.add_hline(y=70, line_dash="dash", line_color="red")
|
73 |
+
fig2.add_hline(y=30, line_dash="dash", line_color="green")
|
74 |
+
fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI')
|
75 |
+
|
76 |
+
# MACD
|
77 |
+
fig3 = go.Figure()
|
78 |
+
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD'))
|
79 |
+
fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line'))
|
80 |
+
fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value')
|
81 |
+
|
82 |
+
return fig1, fig2, fig3
|
83 |
+
|
84 |
+
########################################
|
85 |
+
# OKX Data Fetching Functions
|
86 |
########################################
|
87 |
|
88 |
def fetch_okx_symbols():
|
|
|
97 |
|
98 |
if json_data.get("code") != "0":
|
99 |
logging.error(f"Non-zero code returned: {json_data}")
|
100 |
+
return ["BTC-USDT"] # Default fallback
|
101 |
|
102 |
data = json_data.get("data", [])
|
103 |
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
|
104 |
if not symbols:
|
105 |
+
return ["BTC-USDT"]
|
|
|
106 |
|
107 |
+
# Ensure BTC-USDT is first in the list
|
108 |
+
if "BTC-USDT" in symbols:
|
109 |
+
symbols.remove("BTC-USDT")
|
110 |
+
symbols.insert(0, "BTC-USDT")
|
111 |
+
|
112 |
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
|
113 |
+
return symbols
|
114 |
|
115 |
except Exception as e:
|
116 |
logging.error(f"Error fetching OKX symbols: {e}")
|
117 |
+
return ["BTC-USDT"]
|
|
|
118 |
|
119 |
def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
params = {
|
121 |
"instId": symbol,
|
122 |
"bar": timeframe,
|
123 |
"limit": limit
|
124 |
}
|
125 |
if after is not None:
|
|
|
126 |
params["after"] = str(after)
|
127 |
if before is not None:
|
|
|
128 |
params["before"] = str(before)
|
129 |
|
130 |
+
logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}")
|
131 |
try:
|
132 |
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
|
133 |
resp.raise_for_status()
|
|
|
142 |
if not items:
|
143 |
return pd.DataFrame(), ""
|
144 |
|
145 |
+
columns = ["ts", "o", "h", "l", "c", "vol", "volCcy", "volCcyQuote", "confirm"]
|
|
|
|
|
|
|
|
|
146 |
df = pd.DataFrame(items, columns=columns)
|
147 |
df.rename(columns={
|
148 |
"ts": "timestamp",
|
|
|
162 |
return pd.DataFrame(), err_msg
|
163 |
|
164 |
|
165 |
+
|
166 |
def fetch_okx_candles(symbol, timeframe="1H", total=2000):
|
167 |
"""
|
168 |
+
Fetch historical candle data
|
|
|
|
|
|
|
|
|
169 |
"""
|
170 |
+
logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe}")
|
171 |
|
|
|
172 |
calls_needed = math.ceil(total / 300.0)
|
173 |
all_data = []
|
174 |
+
after_ts = None
|
175 |
|
176 |
for _ in range(calls_needed):
|
177 |
df_chunk, err = fetch_okx_candles_chunk(
|
|
|
180 |
if err:
|
181 |
return pd.DataFrame(), err
|
182 |
if df_chunk.empty:
|
|
|
183 |
break
|
184 |
|
|
|
185 |
earliest_ts = df_chunk["timestamp"].iloc[-1]
|
|
|
|
|
186 |
after_ts = int(earliest_ts.timestamp() * 1000 - 1)
|
|
|
|
|
187 |
all_data.append(df_chunk)
|
188 |
|
189 |
if len(df_chunk) < 300:
|
|
|
190 |
break
|
191 |
|
|
|
192 |
if not all_data:
|
|
|
193 |
return pd.DataFrame(), "No data returned."
|
194 |
|
195 |
df_all = pd.concat(all_data, ignore_index=True)
|
|
|
|
|
196 |
df_all.sort_values(by="timestamp", inplace=True)
|
197 |
df_all.reset_index(drop=True, inplace=True)
|
198 |
+
|
199 |
+
# Calculate technical indicators
|
200 |
+
df_all = calculate_technical_indicators(df_all)
|
201 |
+
|
202 |
+
logging.info(f"Fetched {len(df_all)} rows for {symbol}.")
|
203 |
return df_all, ""
|
204 |
|
|
|
205 |
########################################
|
206 |
+
# Prophet Pipeline
|
207 |
########################################
|
208 |
|
209 |
def prepare_data_for_prophet(df):
|
|
|
|
|
|
|
210 |
if df.empty:
|
|
|
211 |
return pd.DataFrame(columns=["ds", "y"])
|
212 |
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
213 |
return df_prophet[["ds", "y"]]
|
214 |
|
|
|
215 |
def prophet_forecast(
|
216 |
df_prophet,
|
217 |
periods=10,
|
|
|
222 |
seasonality_mode="additive",
|
223 |
changepoint_prior_scale=0.05,
|
224 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
if df_prophet.empty:
|
226 |
+
return pd.DataFrame(), "No data for Prophet."
|
|
|
227 |
|
228 |
try:
|
229 |
model = Prophet(
|
|
|
242 |
return pd.DataFrame(), f"Forecast error: {e}"
|
243 |
|
244 |
|
245 |
+
|
246 |
+
|
247 |
def prophet_wrapper(
|
248 |
df_prophet,
|
249 |
forecast_steps,
|
|
|
254 |
seasonality_mode,
|
255 |
changepoint_prior_scale,
|
256 |
):
|
|
|
|
|
|
|
257 |
if len(df_prophet) < 10:
|
258 |
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
259 |
|
|
|
270 |
if err:
|
271 |
return pd.DataFrame(), err
|
272 |
|
|
|
273 |
future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
274 |
return future_only, ""
|
275 |
|
|
|
276 |
########################################
|
277 |
+
# Plotting Functions
|
278 |
########################################
|
279 |
|
280 |
+
def create_forecast_plot(forecast_df):
|
|
|
|
|
|
|
281 |
if forecast_df.empty:
|
282 |
+
return go.Figure()
|
283 |
|
284 |
fig = go.Figure()
|
285 |
fig.add_trace(go.Scatter(
|
|
|
287 |
y=forecast_df["yhat"],
|
288 |
mode="lines",
|
289 |
name="Forecast",
|
290 |
+
line=dict(color="blue", width=2)
|
291 |
))
|
292 |
|
|
|
293 |
fig.add_trace(go.Scatter(
|
294 |
x=forecast_df["ds"],
|
295 |
y=forecast_df["yhat_lower"],
|
296 |
fill=None,
|
297 |
mode="lines",
|
298 |
+
line=dict(width=0),
|
299 |
+
showlegend=True,
|
300 |
+
name="Lower Bound"
|
301 |
))
|
302 |
|
|
|
303 |
fig.add_trace(go.Scatter(
|
304 |
x=forecast_df["ds"],
|
305 |
y=forecast_df["yhat_upper"],
|
306 |
fill="tonexty",
|
307 |
mode="lines",
|
308 |
+
line=dict(width=0),
|
309 |
+
name="Upper Bound"
|
310 |
))
|
311 |
|
312 |
fig.update_layout(
|
313 |
+
title="Price Forecast",
|
314 |
+
xaxis_title="Time",
|
315 |
yaxis_title="Price",
|
316 |
+
hovermode="x unified",
|
317 |
+
template="plotly_white",
|
318 |
+
legend=dict(
|
319 |
+
yanchor="top",
|
320 |
+
y=0.99,
|
321 |
+
xanchor="left",
|
322 |
+
x=0.01
|
323 |
+
)
|
324 |
)
|
325 |
return fig
|
326 |
|
|
|
327 |
########################################
|
328 |
+
# Main Prediction Function
|
329 |
########################################
|
330 |
|
331 |
def predict(
|
|
|
339 |
seasonality_mode,
|
340 |
changepoint_prior_scale,
|
341 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
|
|
|
|
343 |
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles)
|
344 |
if err:
|
345 |
+
return pd.DataFrame(), pd.DataFrame(), err
|
346 |
|
347 |
df_prophet = prepare_data_for_prophet(df_raw)
|
|
|
|
|
348 |
freq = "h" if "h" in timeframe.lower() else "d"
|
349 |
|
350 |
future_df, err2 = prophet_wrapper(
|
|
|
358 |
changepoint_prior_scale,
|
359 |
)
|
360 |
if err2:
|
361 |
+
return pd.DataFrame(), pd.DataFrame(), err2
|
362 |
+
|
363 |
+
return df_raw, future_df, ""
|
364 |
|
|
|
365 |
|
366 |
|
367 |
def display_forecast(
|
|
|
375 |
seasonality_mode,
|
376 |
changepoint_prior_scale,
|
377 |
):
|
378 |
+
logging.info(f"Processing forecast request for {symbol}")
|
379 |
+
|
380 |
+
df_raw, forecast_df, error = predict(
|
|
|
|
|
|
|
381 |
symbol,
|
382 |
timeframe,
|
383 |
forecast_steps,
|
|
|
388 |
seasonality_mode,
|
389 |
changepoint_prior_scale,
|
390 |
)
|
391 |
+
|
392 |
if error:
|
393 |
+
return None, None, None, None, f"Error: {error}"
|
|
|
|
|
|
|
394 |
|
395 |
+
forecast_plot = create_forecast_plot(forecast_df)
|
396 |
+
tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw)
|
397 |
+
|
398 |
+
return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df
|
399 |
|
400 |
def main():
|
|
|
401 |
symbols = fetch_okx_symbols()
|
402 |
+
|
403 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
404 |
+
with gr.Row():
|
405 |
+
gr.Markdown("# Cryptocurrency Price Forecasting System")
|
406 |
+
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Column(scale=1):
|
409 |
+
with gr.Box():
|
410 |
+
gr.Markdown("### Market Selection")
|
411 |
+
symbol_dd = gr.Dropdown(
|
412 |
+
label="Trading Pair",
|
413 |
+
choices=symbols,
|
414 |
+
value="BTC-USDT"
|
415 |
+
)
|
416 |
+
timeframe_dd = gr.Dropdown(
|
417 |
+
label="Timeframe",
|
418 |
+
choices=list(TIMEFRAME_MAPPING.keys()),
|
419 |
+
value="1h"
|
420 |
+
)
|
421 |
+
|
422 |
+
with gr.Column(scale=1):
|
423 |
+
with gr.Box():
|
424 |
+
gr.Markdown("### Forecast Parameters")
|
425 |
+
forecast_steps_slider = gr.Slider(
|
426 |
+
label="Forecast Steps",
|
427 |
+
minimum=1,
|
428 |
+
maximum=100,
|
429 |
+
value=24,
|
430 |
+
step=1
|
431 |
+
)
|
432 |
+
total_candles_slider = gr.Slider(
|
433 |
+
label="Historical Candles",
|
434 |
+
minimum=300,
|
435 |
+
maximum=3000,
|
436 |
+
value=2000,
|
437 |
+
step=100
|
438 |
+
)
|
439 |
+
|
440 |
+
with gr.Row():
|
441 |
+
with gr.Column():
|
442 |
+
with gr.Box():
|
443 |
+
gr.Markdown("### Advanced Settings")
|
444 |
+
with gr.Row():
|
445 |
+
daily_box = gr.Checkbox(label="Daily Seasonality", value=True)
|
446 |
+
weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True)
|
447 |
+
yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False)
|
448 |
+
seasonality_mode_dd = gr.Dropdown(
|
449 |
+
label="Seasonality Mode",
|
450 |
+
choices=["additive", "multiplicative"],
|
451 |
+
value="additive"
|
452 |
+
)
|
453 |
+
changepoint_scale_slider = gr.Slider(
|
454 |
+
label="Changepoint Prior Scale",
|
455 |
+
minimum=0.01,
|
456 |
+
maximum=1.0,
|
457 |
+
step=0.01,
|
458 |
+
value=0.05
|
459 |
+
)
|
460 |
+
|
461 |
+
with gr.Row():
|
462 |
+
forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg")
|
463 |
+
|
464 |
+
with gr.Row():
|
465 |
+
forecast_plot = gr.Plot(label="Price Forecast")
|
466 |
+
|
467 |
+
with gr.Row():
|
468 |
+
tech_plot = gr.Plot(label="Technical Analysis")
|
469 |
+
rsi_plot = gr.Plot(label="RSI Indicator")
|
470 |
+
|
471 |
+
with gr.Row():
|
472 |
+
macd_plot = gr.Plot(label="MACD")
|
473 |
+
|
474 |
+
with gr.Row():
|
475 |
+
forecast_df = gr.Dataframe(
|
476 |
+
label="Forecast Data",
|
477 |
+
headers=["Date", "Forecast", "Lower Bound", "Upper Bound"]
|
478 |
+
)
|
479 |
|
|
|
480 |
forecast_btn.click(
|
481 |
fn=display_forecast,
|
482 |
inputs=[
|
|
|
490 |
seasonality_mode_dd,
|
491 |
changepoint_scale_slider,
|
492 |
],
|
493 |
+
outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df]
|
|
|
|
|
|
|
|
|
|
|
494 |
)
|
495 |
|
496 |
return demo
|
497 |
|
|
|
498 |
if __name__ == "__main__":
|
499 |
app = main()
|
500 |
+
app.launch()
|