import gradio as gr import pandas as pd import requests from prophet import Prophet import logging logging.basicConfig(level=logging.INFO) ######################################## # OKX endpoints & utility ######################################## OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT" OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles" TIMEFRAME_MAPPING = { "1m": "1m", "5m": "5m", "15m": "15m", "30m": "30m", "1h": "1H", # OKX expects '1H' "2h": "2H", "4h": "4H", "6h": "6H", "12h": "12H", "1d": "1D", "1w": "1W", } def fetch_okx_symbols(): """ Fetch the list of symbols (instId) from OKX Spot tickers. """ logging.info("Fetching symbols from OKX Spot tickers...") try: resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30) resp.raise_for_status() json_data = resp.json() if json_data.get("code") != "0": logging.error(f"Non-zero code returned: {json_data}") return ["Error: Could not fetch OKX symbols"] data = json_data.get("data", []) symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"] if not symbols: logging.warning("No spot symbols found.") return ["Error: No spot symbols found."] logging.info(f"Fetched {len(symbols)} OKX spot symbols.") return sorted(symbols) except Exception as e: logging.error(f"Error fetching OKX symbols: {e}") return [f"Error: {str(e)}"] def fetch_okx_candles(symbol, timeframe="1H", limit=500): """ Fetch historical candle data for a symbol from OKX. OKX data columns: [ts, o, h, l, c, vol, volCcy, volCcyQuote, confirm] """ logging.info(f"Fetching {limit} candles for {symbol} @ {timeframe} from OKX...") params = { "instId": symbol, "bar": timeframe, "limit": limit } try: resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30) resp.raise_for_status() json_data = resp.json() if json_data.get("code") != "0": msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}" logging.error(msg) return pd.DataFrame(), msg items = json_data.get("data", []) if not items: warning_msg = f"No candle data returned for {symbol}." logging.warning(warning_msg) return pd.DataFrame(), warning_msg # Reverse to chronological (OKX returns newest first) items.reverse() columns = [ "ts", "o", "h", "l", "c", "vol", "volCcy", "volCcyQuote", "confirm" ] df = pd.DataFrame(items, columns=columns) df.rename(columns={ "ts": "timestamp", "o": "open", "h": "high", "l": "low", "c": "close" }, inplace=True) df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms") numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"] df[numeric_cols] = df[numeric_cols].astype(float) logging.info(f"Fetched {len(df)} rows for {symbol}.") return df, "" except Exception as e: err_msg = f"Error fetching candles for {symbol}: {e}" logging.error(err_msg) return pd.DataFrame(), err_msg ######################################## # Prophet pipeline ######################################## def prepare_data_for_prophet(df): """ Convert the DataFrame to a Prophet-compatible format. """ if df.empty: logging.warning("Empty DataFrame, cannot prepare data for Prophet.") return pd.DataFrame(columns=["ds", "y"]) df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"}) return df_prophet[["ds", "y"]] def prophet_forecast(df_prophet, periods=10, freq="h"): """ Train a Prophet model and forecast. Using 'h' or 'd' to avoid the future deprecation warning in pandas. """ if df_prophet.empty: logging.warning("Prophet input is empty, no forecast can be generated.") return pd.DataFrame(), "No data to forecast." try: model = Prophet() model.fit(df_prophet) future = model.make_future_dataframe(periods=periods, freq=freq) forecast = model.predict(future) return forecast, "" except Exception as e: logging.error(f"Forecast error: {e}") return pd.DataFrame(), f"Forecast error: {e}" def prophet_wrapper(df_prophet, forecast_steps, freq): """ Forecast, then slice out only the new/future rows using .loc. """ if len(df_prophet) < 10: return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)." full_forecast, err = prophet_forecast(df_prophet, forecast_steps, freq) if err: return pd.DataFrame(), err # Slice from len(df_prophet) onward, for columns ds, yhat, yhat_lower, yhat_upper future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]] return future_only, "" ######################################## # Main Gradio logic ######################################## def predict(symbol, timeframe, forecast_steps): """ Orchestrate candle fetch + prophet forecast. """ # Convert user timeframe to OKX bar param okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H") df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, limit=500) if err: return pd.DataFrame(), err df_prophet = prepare_data_for_prophet(df_raw) # If timeframe string has 'h', use 'h' for freq. Else use 'd' freq = "h" if "h" in timeframe.lower() else "d" future_df, err2 = prophet_wrapper(df_prophet, forecast_steps, freq) if err2: return pd.DataFrame(), err2 return future_df, "" def display_forecast(symbol, timeframe, forecast_steps): """ For the Gradio UI, returns forecast or error message. """ logging.info(f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}") forecast_df, error = predict(symbol, timeframe, forecast_steps) if error: return f"Error: {error}" return forecast_df def main(): # Fetch OKX symbols symbols = fetch_okx_symbols() if not symbols or "Error" in symbols[0]: symbols = ["No symbols available"] with gr.Blocks() as demo: gr.Markdown("# OKX Price Forecasting with Prophet") gr.Markdown( "This app pulls spot-market candles from OKX, trains a simple Prophet model, " "and displays only future predictions. If you see errors or no data, try another symbol/timeframe." ) symbol_dd = gr.Dropdown( label="Symbol", choices=symbols, value=symbols[0] if symbols else None ) timeframe_dd = gr.Dropdown( label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"], value="1h" ) steps_slider = gr.Slider( label="Forecast Steps", minimum=1, maximum=100, value=10 ) forecast_btn = gr.Button("Generate Forecast") output_df = gr.Dataframe( label="Future Forecast Only", headers=["ds", "yhat", "yhat_lower", "yhat_upper"] ) forecast_btn.click( fn=display_forecast, inputs=[symbol_dd, timeframe_dd, steps_slider], outputs=output_df ) gr.Markdown( "Need more tools? Check out this " "[crypto trading bot](https://www.gunbot.com)." ) return demo if __name__ == "__main__": app = main() app.launch()