Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,62 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
import requests
|
4 |
from io import BytesIO
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
converts the file to the opposite format, and returns the converted file along with a preview
|
11 |
-
of the top 10 rows.
|
12 |
-
"""
|
13 |
-
df = None
|
14 |
-
source = None
|
15 |
-
converted_format = None
|
16 |
-
output_file = None
|
17 |
-
|
18 |
-
# If no file is provided via upload and URL is empty, raise an error.
|
19 |
-
if input_file is None and (file_url is None or file_url.strip() == ""):
|
20 |
-
raise ValueError("Please provide an uploaded file or a Hugging Face dataset URL.")
|
21 |
-
|
22 |
-
if input_file is not None:
|
23 |
-
# Process the uploaded file.
|
24 |
-
source = input_file.name
|
25 |
-
file_extension = source.lower().split('.')[-1]
|
26 |
-
file_bytes = input_file.read() # read the file content
|
27 |
-
|
28 |
-
if file_extension == "csv":
|
29 |
-
df = pd.read_csv(BytesIO(file_bytes))
|
30 |
-
converted_format = "Parquet"
|
31 |
-
output_file = "output.parquet"
|
32 |
-
elif file_extension == "parquet":
|
33 |
-
df = pd.read_parquet(BytesIO(file_bytes))
|
34 |
-
converted_format = "CSV"
|
35 |
-
output_file = "output.csv"
|
36 |
-
else:
|
37 |
-
raise ValueError("Uploaded file must have a .csv or .parquet extension.")
|
38 |
-
else:
|
39 |
-
# Process the URL input.
|
40 |
-
file_url = file_url.strip()
|
41 |
-
if "huggingface.co" not in file_url:
|
42 |
-
raise ValueError("Please provide a URL from Hugging Face datasets.")
|
43 |
-
if not file_url.lower().startswith(("http://", "https://")):
|
44 |
-
file_url = "https://" + file_url
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
content = response.content
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
output_file = "output.parquet"
|
55 |
-
elif file_url.lower().endswith(".parquet"):
|
56 |
-
df = pd.read_parquet(BytesIO(content))
|
57 |
-
converted_format = "CSV"
|
58 |
-
output_file = "output.csv"
|
59 |
-
else:
|
60 |
-
raise ValueError("The URL must point to a .csv or .parquet file.")
|
61 |
|
62 |
-
#
|
63 |
-
if
|
|
|
|
|
|
|
|
|
64 |
df.to_parquet(output_file, index=False)
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
df.to_csv(output_file, index=False)
|
|
|
|
|
|
|
67 |
|
68 |
-
#
|
69 |
preview = df.head(10).to_string(index=False)
|
70 |
info_message = (
|
71 |
-
f"Input file: {
|
72 |
f"Converted file format: {converted_format}\n\n"
|
73 |
f"Preview (Top 10 Rows):\n{preview}"
|
74 |
)
|
75 |
-
|
76 |
return output_file, info_message
|
77 |
|
78 |
demo = gr.Interface(
|
79 |
-
fn=
|
80 |
inputs=[
|
81 |
-
gr.File(label="
|
82 |
-
gr.
|
83 |
-
label="Hugging Face Dataset URL (Optional)",
|
84 |
-
placeholder="e.g., huggingface.co/datasets/username/dataset/filename.csv"
|
85 |
-
)
|
86 |
],
|
87 |
outputs=[
|
88 |
gr.File(label="Converted File"),
|
89 |
gr.Textbox(label="Preview (Top 10 Rows)", lines=15)
|
90 |
],
|
91 |
-
title="
|
92 |
description=(
|
93 |
-
"Upload a
|
94 |
-
"The app
|
95 |
-
"and displays a preview of the top 10 rows."
|
96 |
)
|
97 |
)
|
98 |
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
from io import BytesIO
|
4 |
|
5 |
+
def convert_file(input_file, conversion_type):
|
6 |
+
# Check if a file was uploaded
|
7 |
+
if input_file is None:
|
8 |
+
raise ValueError("Please upload a file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
file_name = input_file.name
|
11 |
+
file_extension = file_name.lower().split('.')[-1]
|
12 |
+
file_bytes = input_file.read()
|
|
|
13 |
|
14 |
+
df = None
|
15 |
+
output_file = None
|
16 |
+
converted_format = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Conversion: CSV to Parquet
|
19 |
+
if conversion_type == "CSV to Parquet":
|
20 |
+
if file_extension != "csv":
|
21 |
+
raise ValueError("For CSV to Parquet conversion, please upload a CSV file.")
|
22 |
+
df = pd.read_csv(BytesIO(file_bytes))
|
23 |
+
output_file = "output.parquet"
|
24 |
df.to_parquet(output_file, index=False)
|
25 |
+
converted_format = "Parquet"
|
26 |
+
# Conversion: Parquet to CSV
|
27 |
+
elif conversion_type == "Parquet to CSV":
|
28 |
+
if file_extension != "parquet":
|
29 |
+
raise ValueError("For Parquet to CSV conversion, please upload a Parquet file.")
|
30 |
+
df = pd.read_parquet(BytesIO(file_bytes))
|
31 |
+
output_file = "output.csv"
|
32 |
df.to_csv(output_file, index=False)
|
33 |
+
converted_format = "CSV"
|
34 |
+
else:
|
35 |
+
raise ValueError("Invalid conversion type selected.")
|
36 |
|
37 |
+
# Generate a preview of the top 10 rows
|
38 |
preview = df.head(10).to_string(index=False)
|
39 |
info_message = (
|
40 |
+
f"Input file: {file_name}\n"
|
41 |
f"Converted file format: {converted_format}\n\n"
|
42 |
f"Preview (Top 10 Rows):\n{preview}"
|
43 |
)
|
|
|
44 |
return output_file, info_message
|
45 |
|
46 |
demo = gr.Interface(
|
47 |
+
fn=convert_file,
|
48 |
inputs=[
|
49 |
+
gr.File(label="Upload CSV or Parquet File"),
|
50 |
+
gr.Radio(choices=["CSV to Parquet", "Parquet to CSV"], label="Conversion Type")
|
|
|
|
|
|
|
51 |
],
|
52 |
outputs=[
|
53 |
gr.File(label="Converted File"),
|
54 |
gr.Textbox(label="Preview (Top 10 Rows)", lines=15)
|
55 |
],
|
56 |
+
title="CSV <-> Parquet Converter",
|
57 |
description=(
|
58 |
+
"Upload a CSV or Parquet file and select the conversion type. "
|
59 |
+
"The app converts the file to the opposite format and displays a preview of the top 10 rows."
|
|
|
60 |
)
|
61 |
)
|
62 |
|