Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,111 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
from io import BytesIO
|
|
|
4 |
|
5 |
-
def
|
6 |
-
#
|
7 |
-
|
8 |
-
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
file_extension = file_name.lower().split('.')[-1]
|
22 |
-
df = None
|
23 |
-
output_file = None
|
24 |
-
converted_format = None
|
25 |
-
|
26 |
# Conversion: CSV to Parquet
|
27 |
if conversion_type == "CSV to Parquet":
|
28 |
-
if file_extension != "csv":
|
29 |
raise ValueError("For CSV to Parquet conversion, please upload a CSV file.")
|
30 |
df = pd.read_csv(BytesIO(file_bytes))
|
31 |
output_file = "output.parquet"
|
32 |
df.to_parquet(output_file, index=False)
|
33 |
converted_format = "Parquet"
|
|
|
|
|
34 |
# Conversion: Parquet to CSV
|
35 |
elif conversion_type == "Parquet to CSV":
|
36 |
-
if file_extension != "parquet":
|
37 |
raise ValueError("For Parquet to CSV conversion, please upload a Parquet file.")
|
38 |
df = pd.read_parquet(BytesIO(file_bytes))
|
39 |
output_file = "output.csv"
|
40 |
df.to_csv(output_file, index=False)
|
41 |
converted_format = "CSV"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
else:
|
43 |
raise ValueError("Invalid conversion type selected.")
|
44 |
|
45 |
-
# Generate a preview of the top 10 rows
|
46 |
-
preview = df.head(10).to_string(index=False)
|
47 |
info_message = (
|
48 |
-
f"Input file: {file_name}\n"
|
49 |
f"Converted file format: {converted_format}\n\n"
|
50 |
-
f"Preview (Top 10 Rows):\n{
|
51 |
)
|
52 |
return output_file, info_message
|
53 |
|
@@ -85,15 +143,24 @@ h1, h2 {
|
|
85 |
}
|
86 |
"""
|
87 |
|
88 |
-
with gr.Blocks(css=custom_css, title="
|
89 |
-
gr.Markdown("#
|
90 |
-
gr.Markdown(
|
|
|
|
|
|
|
91 |
|
92 |
with gr.Row():
|
93 |
with gr.Column(scale=1):
|
94 |
input_file = gr.File(label="Upload CSV or Parquet File")
|
95 |
with gr.Column(scale=1):
|
96 |
-
conversion_type = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
convert_button = gr.Button("Convert", elem_classes=["gradio-button"])
|
99 |
|
@@ -101,6 +168,10 @@ with gr.Blocks(css=custom_css, title="CSV <-> Parquet Converter") as demo:
|
|
101 |
output_file = gr.File(label="Converted File")
|
102 |
preview = gr.Textbox(label="Preview (Top 10 Rows)", lines=15)
|
103 |
|
104 |
-
convert_button.click(
|
|
|
|
|
|
|
|
|
105 |
|
106 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import json
|
4 |
from io import BytesIO
|
5 |
+
import requests
|
6 |
|
7 |
+
def dataset_converter(input_file, conversion_type, parquet_url):
|
8 |
+
# Initialize variables for file data and extension
|
9 |
+
file_bytes = None
|
10 |
+
file_name = None
|
11 |
+
file_extension = None
|
12 |
|
13 |
+
# Read the input file if provided
|
14 |
+
if input_file is not None:
|
15 |
+
try:
|
16 |
+
file_bytes = input_file.read()
|
17 |
+
file_name = input_file.name
|
18 |
+
except AttributeError:
|
19 |
+
file_name = input_file
|
20 |
+
with open(file_name, "rb") as f:
|
21 |
+
file_bytes = f.read()
|
22 |
+
file_extension = file_name.lower().split('.')[-1]
|
23 |
|
|
|
|
|
|
|
|
|
|
|
24 |
# Conversion: CSV to Parquet
|
25 |
if conversion_type == "CSV to Parquet":
|
26 |
+
if input_file is None or file_extension != "csv":
|
27 |
raise ValueError("For CSV to Parquet conversion, please upload a CSV file.")
|
28 |
df = pd.read_csv(BytesIO(file_bytes))
|
29 |
output_file = "output.parquet"
|
30 |
df.to_parquet(output_file, index=False)
|
31 |
converted_format = "Parquet"
|
32 |
+
preview_str = df.head(10).to_string(index=False)
|
33 |
+
|
34 |
# Conversion: Parquet to CSV
|
35 |
elif conversion_type == "Parquet to CSV":
|
36 |
+
if input_file is None or file_extension != "parquet":
|
37 |
raise ValueError("For Parquet to CSV conversion, please upload a Parquet file.")
|
38 |
df = pd.read_parquet(BytesIO(file_bytes))
|
39 |
output_file = "output.csv"
|
40 |
df.to_csv(output_file, index=False)
|
41 |
converted_format = "CSV"
|
42 |
+
preview_str = df.head(10).to_string(index=False)
|
43 |
+
|
44 |
+
# Conversion: CSV to JSONL
|
45 |
+
elif conversion_type == "CSV to JSONL":
|
46 |
+
if input_file is None or file_extension != "csv":
|
47 |
+
raise ValueError("For CSV to JSONL conversion, please upload a CSV file.")
|
48 |
+
# Read CSV with latin1 encoding
|
49 |
+
df = pd.read_csv(BytesIO(file_bytes), encoding='latin1')
|
50 |
+
output_file = "metadata.jsonl"
|
51 |
+
total_data = []
|
52 |
+
for index, row in df.iterrows():
|
53 |
+
data = {}
|
54 |
+
file_name_val = None # Initialize file_name for each row
|
55 |
+
for column in df.columns:
|
56 |
+
if column == 'file_name':
|
57 |
+
file_name_val = row[column]
|
58 |
+
data[column] = row[column]
|
59 |
+
row_data = {"file_name": file_name_val, "ground_truth": json.dumps(data)}
|
60 |
+
total_data.append(row_data)
|
61 |
+
# Write JSONL output (using write mode so previous data is overwritten)
|
62 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
63 |
+
for row_data in total_data:
|
64 |
+
f.write(json.dumps(row_data) + '\n')
|
65 |
+
converted_format = "JSONL"
|
66 |
+
preview_str = df.head(10).to_string(index=False)
|
67 |
+
|
68 |
+
# Conversion: Parquet to JSONL
|
69 |
+
elif conversion_type == "Parquet to JSONL":
|
70 |
+
# Use uploaded file if available; otherwise try the provided URL
|
71 |
+
if input_file is not None:
|
72 |
+
df = pd.read_parquet(BytesIO(file_bytes))
|
73 |
+
file_name = file_name # already set
|
74 |
+
elif parquet_url:
|
75 |
+
response = requests.get(parquet_url)
|
76 |
+
response.raise_for_status() # Ensure the request was successful
|
77 |
+
df = pd.read_parquet(BytesIO(response.content))
|
78 |
+
file_name = "from_url.parquet"
|
79 |
+
else:
|
80 |
+
raise ValueError("For Parquet to JSONL conversion, please upload a file or provide a URL.")
|
81 |
+
|
82 |
+
output_file = "output.jsonl"
|
83 |
+
# Recursive function to decode bytes to UTF-8 strings
|
84 |
+
def recursive_sanitize(val):
|
85 |
+
if isinstance(val, bytes):
|
86 |
+
return val.decode("utf-8", errors="replace")
|
87 |
+
elif isinstance(val, dict):
|
88 |
+
return {k: recursive_sanitize(v) for k, v in val.items()}
|
89 |
+
elif isinstance(val, list):
|
90 |
+
return [recursive_sanitize(item) for item in val]
|
91 |
+
else:
|
92 |
+
return val
|
93 |
+
|
94 |
+
records = df.to_dict(orient="records")
|
95 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
96 |
+
for record in records:
|
97 |
+
sanitized_record = recursive_sanitize(record)
|
98 |
+
f.write(json.dumps(sanitized_record, ensure_ascii=False) + "\n")
|
99 |
+
converted_format = "JSONL"
|
100 |
+
preview_str = df.head(10).to_string(index=False)
|
101 |
+
|
102 |
else:
|
103 |
raise ValueError("Invalid conversion type selected.")
|
104 |
|
|
|
|
|
105 |
info_message = (
|
106 |
+
f"Input file: {file_name if file_name is not None else 'N/A'}\n"
|
107 |
f"Converted file format: {converted_format}\n\n"
|
108 |
+
f"Preview (Top 10 Rows):\n{preview_str}"
|
109 |
)
|
110 |
return output_file, info_message
|
111 |
|
|
|
143 |
}
|
144 |
"""
|
145 |
|
146 |
+
with gr.Blocks(css=custom_css, title="Comprehensive Dataset Converter") as demo:
|
147 |
+
gr.Markdown("# Comprehensive Dataset Converter")
|
148 |
+
gr.Markdown(
|
149 |
+
"Upload a CSV or Parquet file (or provide a Parquet file URL for Parquet to JSONL conversion) "
|
150 |
+
"and select the conversion type. The app converts the file to the desired format and displays a preview of the top 10 rows."
|
151 |
+
)
|
152 |
|
153 |
with gr.Row():
|
154 |
with gr.Column(scale=1):
|
155 |
input_file = gr.File(label="Upload CSV or Parquet File")
|
156 |
with gr.Column(scale=1):
|
157 |
+
conversion_type = gr.Radio(
|
158 |
+
choices=["CSV to Parquet", "Parquet to CSV", "CSV to JSONL", "Parquet to JSONL"],
|
159 |
+
label="Conversion Type"
|
160 |
+
)
|
161 |
+
|
162 |
+
# Optional URL input for Parquet to JSONL conversion
|
163 |
+
parquet_url = gr.Textbox(label="Parquet File URL (Optional)", placeholder="Enter URL if not uploading a file")
|
164 |
|
165 |
convert_button = gr.Button("Convert", elem_classes=["gradio-button"])
|
166 |
|
|
|
168 |
output_file = gr.File(label="Converted File")
|
169 |
preview = gr.Textbox(label="Preview (Top 10 Rows)", lines=15)
|
170 |
|
171 |
+
convert_button.click(
|
172 |
+
fn=dataset_converter,
|
173 |
+
inputs=[input_file, conversion_type, parquet_url],
|
174 |
+
outputs=[output_file, preview]
|
175 |
+
)
|
176 |
|
177 |
demo.launch()
|