openfree's picture
Update app.py
434dc20 verified
import gradio as gr
import os
import requests
import json
import time
from dotenv import load_dotenv
# Load .env file (if it exists)
load_dotenv()
def create_deepseek_interface():
# Get API keys from environment variables
api_key = os.getenv("FW_API_KEY")
serphouse_api_key = os.getenv("SERPHOUSE_API_KEY")
if not api_key:
print("Warning: FW_API_KEY environment variable is not set.")
if not serphouse_api_key:
print("Warning: SERPHOUSE_API_KEY environment variable is not set.")
# Keyword extraction function (LLM-based)
def extract_keywords_with_llm(query):
if not api_key:
return "FW_API_KEY not set for LLM keyword extraction.", query
# Extract keywords using LLM (DeepSeek model)
url = "https://api.fireworks.ai/inference/v1/chat/completions"
payload = {
"model": "accounts/fireworks/models/deepseek-v3-0324",
"max_tokens": 200,
"temperature": 0.1, # Low temperature for consistent results
"messages": [
{
"role": "system",
"content": "Extract key search terms from the user's question that would be effective for web searches. Provide these as a search query with words separated by spaces only, without commas. For example: 'Prime Minister Han Duck-soo impeachment results'"
},
{
"role": "user",
"content": query
}
]
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
# Extract keywords from response
keywords = result["choices"][0]["message"]["content"].strip()
# Use original query if keywords are too long or improperly formatted
if len(keywords) > 100:
return f"Extracted keywords: {keywords}", query
return f"Extracted keywords: {keywords}", keywords
except Exception as e:
print(f"Error during keyword extraction: {str(e)}")
return f"Error during keyword extraction: {str(e)}", query
# Search function using SerpHouse API
def search_with_serphouse(query):
if not serphouse_api_key:
return "SERPHOUSE_API_KEY is not set."
try:
# Extract keywords
extraction_result, search_query = extract_keywords_with_llm(query)
print(f"Original query: {query}")
print(extraction_result)
# Basic GET method seems best after analyzing documentation
url = "https://api.serphouse.com/serp/live"
# Check if query is in Korean
is_korean = any('\uAC00' <= c <= '\uD7A3' for c in search_query)
# Simplified parameters
params = {
"q": search_query,
"domain": "google.com",
"serp_type": "web", # Changed to basic web search
"device": "desktop",
"lang": "ko" if is_korean else "en"
}
headers = {
"Authorization": f"Bearer {serphouse_api_key}"
}
print(f"Calling SerpHouse API with basic GET method...")
print(f"Search term: {search_query}")
print(f"Request URL: {url} - Parameters: {params}")
# Execute GET request
response = requests.get(url, headers=headers, params=params)
response.raise_for_status()
print(f"SerpHouse API response status code: {response.status_code}")
search_results = response.json()
# Check response structure
print(f"Response structure: {list(search_results.keys()) if isinstance(search_results, dict) else 'Not a dictionary'}")
# Parse and format search results (in Markdown)
formatted_results = []
formatted_results.append(f"## Search term: {search_query}\n\n")
# Handle various possible response structures
organic_results = None
# Possible response structure 1
if "results" in search_results and "organic" in search_results["results"]:
organic_results = search_results["results"]["organic"]
# Possible response structure 2
elif "organic" in search_results:
organic_results = search_results["organic"]
# Possible response structure 3 (nested results)
elif "results" in search_results and "results" in search_results["results"]:
if "organic" in search_results["results"]["results"]:
organic_results = search_results["results"]["results"]["organic"]
# Process organic results if available
if organic_results and len(organic_results) > 0:
# Output response structure
print(f"First organic result structure: {organic_results[0].keys() if len(organic_results) > 0 else 'empty'}")
for i, result in enumerate(organic_results[:5], 1): # Show only top 5 results
title = result.get("title", "No title")
snippet = result.get("snippet", "No content")
link = result.get("link", "#")
displayed_link = result.get("displayed_link", link)
# Format in Markdown (including number and link)
formatted_results.append(
f"### {i}. [{title}]({link})\n\n"
f"{snippet}\n\n"
f"**Source**: [{displayed_link}]({link})\n\n"
f"---\n\n"
)
print(f"Found {len(organic_results)} search results")
return "".join(formatted_results)
# Handle case with no results or unexpected structure
print("No search results or unexpected response structure")
print(f"Detailed response structure: {search_results.keys() if hasattr(search_results, 'keys') else 'Unclear structure'}")
# Find error messages in response
error_msg = "No search results found or response format is different than expected"
if "error" in search_results:
error_msg = search_results["error"]
elif "message" in search_results:
error_msg = search_results["message"]
return f"## Results for '{search_query}'\n\n{error_msg}"
except Exception as e:
error_msg = f"Error during search: {str(e)}"
print(error_msg)
import traceback
print(traceback.format_exc())
# Add API request details for debugging (in Markdown)
return f"## Error Occurred\n\n" + \
f"An error occurred during search: **{str(e)}**\n\n" + \
f"### API Request Details:\n" + \
f"- **URL**: {url}\n" + \
f"- **Search Term**: {search_query}\n" + \
f"- **Parameters**: {params}\n"
# Function to call DeepSeek API with streaming
def query_deepseek_streaming(message, history, use_deep_research):
if not api_key:
yield history, "Environment variable FW_API_KEY is not set. Please check the environment variables on the server."
return
search_context = ""
search_info = ""
if use_deep_research:
try:
# Start search (first message)
yield history + [(message, "🔍 Extracting optimal keywords and searching the web...")], ""
# Execute search - add logs for debugging
print(f"Deep Research activated: Starting search for '{message}'")
search_results = search_with_serphouse(message)
print(f"Search results received: {search_results[:100]}...") # Output first part of results
if not search_results.startswith("Error during search") and not search_results.startswith("SERPHOUSE_API_KEY"):
search_context = f"""
Here are recent search results related to the user's question. Use this information to provide an accurate response with the latest information:
{search_results}
Based on the above search results, answer the user's question. If you cannot find a clear answer in the search results, use your knowledge to provide the best answer.
When citing search results, mention the source, and ensure your answer reflects the latest information.
"""
search_info = f"🔍 Deep Research feature activated: Generating response based on relevant web search results..."
else:
print(f"Search failed or no results: {search_results}")
except Exception as e:
print(f"Exception occurred during Deep Research: {str(e)}")
search_info = f"🔍 Deep Research feature error: {str(e)}"
# Prepare conversation history for API request
messages = []
for user, assistant in history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": assistant})
# Add system message with search context if available
if search_context:
# DeepSeek model supports system messages
messages.insert(0, {"role": "system", "content": search_context})
# Add new user message
messages.append({"role": "user", "content": message})
# Prepare API request
url = "https://api.fireworks.ai/inference/v1/chat/completions"
payload = {
"model": "accounts/fireworks/models/deepseek-v3-0324",
"max_tokens": 20480,
"top_p": 1,
"top_k": 40,
"presence_penalty": 0,
"frequency_penalty": 0,
"temperature": 0.6,
"messages": messages,
"stream": True # Enable streaming
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
try:
# Request streaming response
response = requests.request("POST", url, headers=headers, data=json.dumps(payload), stream=True)
response.raise_for_status() # Raise exception for HTTP errors
# Add message and start with initial response
new_history = history.copy()
# Include search_info in starting message if available
start_msg = search_info if search_info else ""
new_history.append((message, start_msg))
# Full response text
full_response = start_msg
# Process streaming response
for line in response.iter_lines():
if line:
line_text = line.decode('utf-8')
# Remove 'data: ' prefix
if line_text.startswith("data: "):
line_text = line_text[6:]
# Check for stream end message
if line_text == "[DONE]":
break
try:
# Parse JSON
chunk = json.loads(line_text)
chunk_content = chunk.get("choices", [{}])[0].get("delta", {}).get("content", "")
if chunk_content:
full_response += chunk_content
# Update chat history
new_history[-1] = (message, full_response)
yield new_history, ""
except json.JSONDecodeError:
continue
# Return final response
yield new_history, ""
except requests.exceptions.RequestException as e:
error_msg = f"API error: {str(e)}"
if hasattr(e, 'response') and e.response and e.response.status_code == 401:
error_msg = "Authentication failed. Please check your FW_API_KEY environment variable."
yield history, error_msg
# Create Gradio interface
with gr.Blocks(theme="soft", fill_height=True) as demo:
# Header section
gr.Markdown(
"""
# 🤖 DeepSeek V3-0324 + Research
### DeepSeek V3-0324 Latest Model + Real-time 'Deep Research' Agentic AI System @ https://discord.gg/openfreeai
"""
)
# Main layout
with gr.Row():
# Main content area
with gr.Column():
# Chat interface
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True
)
# Add Deep Research toggle and status display
with gr.Row():
with gr.Column(scale=3):
use_deep_research = gr.Checkbox(
label="Enable Deep Research",
info="Utilize optimal keyword extraction and web search for latest information",
value=False
)
with gr.Column(scale=1):
api_status = gr.Markdown("API Status: Ready")
# Check and display API key status
if not serphouse_api_key:
api_status.value = "⚠️ SERPHOUSE_API_KEY is not set"
if not api_key:
api_status.value = "⚠️ FW_API_KEY is not set"
if api_key and serphouse_api_key:
api_status.value = "✅ API keys configured"
# Input area
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Enter your prompt here...",
show_label=False,
scale=9
)
submit = gr.Button("Send", variant="primary", scale=1)
# Clear conversation button
with gr.Row():
clear = gr.ClearButton([msg, chatbot], value="🧹 Clear Conversation")
# Example queries
gr.Examples(
examples=[
"Explain the difference between Transformers and RNNs in deep learning.",
"Write a Python function to find prime numbers within a specific range.",
"Summarize the key concepts of reinforcement learning."
],
inputs=msg
)
# Error message display
error_box = gr.Markdown("")
# Connect buttons to functions
submit.click(
query_deepseek_streaming,
inputs=[msg, chatbot, use_deep_research],
outputs=[chatbot, error_box]
).then(
lambda: "",
None,
[msg]
)
# Allow Enter key submission
msg.submit(
query_deepseek_streaming,
inputs=[msg, chatbot, use_deep_research],
outputs=[chatbot, error_box]
).then(
lambda: "",
None,
[msg]
)
return demo
# Run interface
if __name__ == "__main__":
demo = create_deepseek_interface()
demo.launch(debug=True)