|
import gradio as gr |
|
import os |
|
import requests |
|
import json |
|
import time |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
def create_deepseek_interface(): |
|
|
|
api_key = os.getenv("FW_API_KEY") |
|
serphouse_api_key = os.getenv("SERPHOUSE_API_KEY") |
|
|
|
if not api_key: |
|
print("Warning: FW_API_KEY environment variable is not set.") |
|
if not serphouse_api_key: |
|
print("Warning: SERPHOUSE_API_KEY environment variable is not set.") |
|
|
|
|
|
def extract_keywords_with_llm(query): |
|
if not api_key: |
|
return "FW_API_KEY not set for LLM keyword extraction.", query |
|
|
|
|
|
url = "https://api.fireworks.ai/inference/v1/chat/completions" |
|
payload = { |
|
"model": "accounts/fireworks/models/deepseek-v3-0324", |
|
"max_tokens": 200, |
|
"temperature": 0.1, |
|
"messages": [ |
|
{ |
|
"role": "system", |
|
"content": "Extract key search terms from the user's question that would be effective for web searches. Provide these as a search query with words separated by spaces only, without commas. For example: 'Prime Minister Han Duck-soo impeachment results'" |
|
}, |
|
{ |
|
"role": "user", |
|
"content": query |
|
} |
|
] |
|
} |
|
headers = { |
|
"Accept": "application/json", |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
|
|
try: |
|
response = requests.post(url, headers=headers, json=payload) |
|
response.raise_for_status() |
|
result = response.json() |
|
|
|
|
|
keywords = result["choices"][0]["message"]["content"].strip() |
|
|
|
|
|
if len(keywords) > 100: |
|
return f"Extracted keywords: {keywords}", query |
|
|
|
return f"Extracted keywords: {keywords}", keywords |
|
|
|
except Exception as e: |
|
print(f"Error during keyword extraction: {str(e)}") |
|
return f"Error during keyword extraction: {str(e)}", query |
|
|
|
|
|
def search_with_serphouse(query): |
|
if not serphouse_api_key: |
|
return "SERPHOUSE_API_KEY is not set." |
|
|
|
try: |
|
|
|
extraction_result, search_query = extract_keywords_with_llm(query) |
|
print(f"Original query: {query}") |
|
print(extraction_result) |
|
|
|
|
|
url = "https://api.serphouse.com/serp/live" |
|
|
|
|
|
is_korean = any('\uAC00' <= c <= '\uD7A3' for c in search_query) |
|
|
|
|
|
params = { |
|
"q": search_query, |
|
"domain": "google.com", |
|
"serp_type": "web", |
|
"device": "desktop", |
|
"lang": "ko" if is_korean else "en" |
|
} |
|
|
|
headers = { |
|
"Authorization": f"Bearer {serphouse_api_key}" |
|
} |
|
|
|
print(f"Calling SerpHouse API with basic GET method...") |
|
print(f"Search term: {search_query}") |
|
print(f"Request URL: {url} - Parameters: {params}") |
|
|
|
|
|
response = requests.get(url, headers=headers, params=params) |
|
response.raise_for_status() |
|
|
|
print(f"SerpHouse API response status code: {response.status_code}") |
|
search_results = response.json() |
|
|
|
|
|
print(f"Response structure: {list(search_results.keys()) if isinstance(search_results, dict) else 'Not a dictionary'}") |
|
|
|
|
|
formatted_results = [] |
|
formatted_results.append(f"## Search term: {search_query}\n\n") |
|
|
|
|
|
organic_results = None |
|
|
|
|
|
if "results" in search_results and "organic" in search_results["results"]: |
|
organic_results = search_results["results"]["organic"] |
|
|
|
|
|
elif "organic" in search_results: |
|
organic_results = search_results["organic"] |
|
|
|
|
|
elif "results" in search_results and "results" in search_results["results"]: |
|
if "organic" in search_results["results"]["results"]: |
|
organic_results = search_results["results"]["results"]["organic"] |
|
|
|
|
|
if organic_results and len(organic_results) > 0: |
|
|
|
print(f"First organic result structure: {organic_results[0].keys() if len(organic_results) > 0 else 'empty'}") |
|
|
|
for i, result in enumerate(organic_results[:5], 1): |
|
title = result.get("title", "No title") |
|
snippet = result.get("snippet", "No content") |
|
link = result.get("link", "#") |
|
displayed_link = result.get("displayed_link", link) |
|
|
|
|
|
formatted_results.append( |
|
f"### {i}. [{title}]({link})\n\n" |
|
f"{snippet}\n\n" |
|
f"**Source**: [{displayed_link}]({link})\n\n" |
|
f"---\n\n" |
|
) |
|
|
|
print(f"Found {len(organic_results)} search results") |
|
return "".join(formatted_results) |
|
|
|
|
|
print("No search results or unexpected response structure") |
|
print(f"Detailed response structure: {search_results.keys() if hasattr(search_results, 'keys') else 'Unclear structure'}") |
|
|
|
|
|
error_msg = "No search results found or response format is different than expected" |
|
if "error" in search_results: |
|
error_msg = search_results["error"] |
|
elif "message" in search_results: |
|
error_msg = search_results["message"] |
|
|
|
return f"## Results for '{search_query}'\n\n{error_msg}" |
|
|
|
except Exception as e: |
|
error_msg = f"Error during search: {str(e)}" |
|
print(error_msg) |
|
import traceback |
|
print(traceback.format_exc()) |
|
|
|
|
|
return f"## Error Occurred\n\n" + \ |
|
f"An error occurred during search: **{str(e)}**\n\n" + \ |
|
f"### API Request Details:\n" + \ |
|
f"- **URL**: {url}\n" + \ |
|
f"- **Search Term**: {search_query}\n" + \ |
|
f"- **Parameters**: {params}\n" |
|
|
|
|
|
def query_deepseek_streaming(message, history, use_deep_research): |
|
if not api_key: |
|
yield history, "Environment variable FW_API_KEY is not set. Please check the environment variables on the server." |
|
return |
|
|
|
search_context = "" |
|
search_info = "" |
|
if use_deep_research: |
|
try: |
|
|
|
yield history + [(message, "🔍 Extracting optimal keywords and searching the web...")], "" |
|
|
|
|
|
print(f"Deep Research activated: Starting search for '{message}'") |
|
search_results = search_with_serphouse(message) |
|
print(f"Search results received: {search_results[:100]}...") |
|
|
|
if not search_results.startswith("Error during search") and not search_results.startswith("SERPHOUSE_API_KEY"): |
|
search_context = f""" |
|
Here are recent search results related to the user's question. Use this information to provide an accurate response with the latest information: |
|
|
|
{search_results} |
|
|
|
Based on the above search results, answer the user's question. If you cannot find a clear answer in the search results, use your knowledge to provide the best answer. |
|
When citing search results, mention the source, and ensure your answer reflects the latest information. |
|
""" |
|
search_info = f"🔍 Deep Research feature activated: Generating response based on relevant web search results..." |
|
else: |
|
print(f"Search failed or no results: {search_results}") |
|
except Exception as e: |
|
print(f"Exception occurred during Deep Research: {str(e)}") |
|
search_info = f"🔍 Deep Research feature error: {str(e)}" |
|
|
|
|
|
messages = [] |
|
for user, assistant in history: |
|
messages.append({"role": "user", "content": user}) |
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
|
|
if search_context: |
|
|
|
messages.insert(0, {"role": "system", "content": search_context}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
url = "https://api.fireworks.ai/inference/v1/chat/completions" |
|
payload = { |
|
"model": "accounts/fireworks/models/deepseek-v3-0324", |
|
"max_tokens": 20480, |
|
"top_p": 1, |
|
"top_k": 40, |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
"temperature": 0.6, |
|
"messages": messages, |
|
"stream": True |
|
} |
|
headers = { |
|
"Accept": "application/json", |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
|
|
try: |
|
|
|
response = requests.request("POST", url, headers=headers, data=json.dumps(payload), stream=True) |
|
response.raise_for_status() |
|
|
|
|
|
new_history = history.copy() |
|
|
|
|
|
start_msg = search_info if search_info else "" |
|
new_history.append((message, start_msg)) |
|
|
|
|
|
full_response = start_msg |
|
|
|
|
|
for line in response.iter_lines(): |
|
if line: |
|
line_text = line.decode('utf-8') |
|
|
|
|
|
if line_text.startswith("data: "): |
|
line_text = line_text[6:] |
|
|
|
|
|
if line_text == "[DONE]": |
|
break |
|
|
|
try: |
|
|
|
chunk = json.loads(line_text) |
|
chunk_content = chunk.get("choices", [{}])[0].get("delta", {}).get("content", "") |
|
|
|
if chunk_content: |
|
full_response += chunk_content |
|
|
|
new_history[-1] = (message, full_response) |
|
yield new_history, "" |
|
except json.JSONDecodeError: |
|
continue |
|
|
|
|
|
yield new_history, "" |
|
|
|
except requests.exceptions.RequestException as e: |
|
error_msg = f"API error: {str(e)}" |
|
if hasattr(e, 'response') and e.response and e.response.status_code == 401: |
|
error_msg = "Authentication failed. Please check your FW_API_KEY environment variable." |
|
yield history, error_msg |
|
|
|
|
|
with gr.Blocks(theme="soft", fill_height=True) as demo: |
|
|
|
gr.Markdown( |
|
""" |
|
# 🤖 DeepSeek V3-0324 + Research |
|
### DeepSeek V3-0324 Latest Model + Real-time 'Deep Research' Agentic AI System @ https://discord.gg/openfreeai |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
|
|
chatbot = gr.Chatbot( |
|
height=500, |
|
show_label=False, |
|
container=True |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
use_deep_research = gr.Checkbox( |
|
label="Enable Deep Research", |
|
info="Utilize optimal keyword extraction and web search for latest information", |
|
value=False |
|
) |
|
with gr.Column(scale=1): |
|
api_status = gr.Markdown("API Status: Ready") |
|
|
|
|
|
if not serphouse_api_key: |
|
api_status.value = "⚠️ SERPHOUSE_API_KEY is not set" |
|
if not api_key: |
|
api_status.value = "⚠️ FW_API_KEY is not set" |
|
if api_key and serphouse_api_key: |
|
api_status.value = "✅ API keys configured" |
|
|
|
|
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
label="Message", |
|
placeholder="Enter your prompt here...", |
|
show_label=False, |
|
scale=9 |
|
) |
|
submit = gr.Button("Send", variant="primary", scale=1) |
|
|
|
|
|
with gr.Row(): |
|
clear = gr.ClearButton([msg, chatbot], value="🧹 Clear Conversation") |
|
|
|
|
|
gr.Examples( |
|
examples=[ |
|
"Explain the difference between Transformers and RNNs in deep learning.", |
|
"Write a Python function to find prime numbers within a specific range.", |
|
"Summarize the key concepts of reinforcement learning." |
|
], |
|
inputs=msg |
|
) |
|
|
|
|
|
error_box = gr.Markdown("") |
|
|
|
|
|
submit.click( |
|
query_deepseek_streaming, |
|
inputs=[msg, chatbot, use_deep_research], |
|
outputs=[chatbot, error_box] |
|
).then( |
|
lambda: "", |
|
None, |
|
[msg] |
|
) |
|
|
|
|
|
msg.submit( |
|
query_deepseek_streaming, |
|
inputs=[msg, chatbot, use_deep_research], |
|
outputs=[chatbot, error_box] |
|
).then( |
|
lambda: "", |
|
None, |
|
[msg] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = create_deepseek_interface() |
|
demo.launch(debug=True) |