openfree commited on
Commit
4efadd3
·
verified ·
1 Parent(s): 99a3580

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -1392
app.py CHANGED
@@ -1,1397 +1,27 @@
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- import requests
3
- import pandas as pd
4
- import plotly.graph_objects as go
5
- from datetime import datetime
6
  import os
 
 
 
7
 
8
- HF_TOKEN = os.getenv("HF_TOKEN")
9
-
10
- target_models = {
11
-
12
- "openfree/president-k-dj": "https://huggingface.co/openfree/president-k-dj",
13
- "openfree/president-pjh": "https://huggingface.co/openfree/president-pjh",
14
-
15
- "openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
16
- "seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
17
- "seawolf2357/ntower": "https://huggingface.co/seawolf2357/ntower",
18
- "openfree/pepe": "https://huggingface.co/openfree/pepe",
19
- "openfree/korea-president-yoon": "https://huggingface.co/openfree/korea-president-yoon",
20
- "seawolf2357/flux-lora-military-artillery-k9": "https://huggingface.co/seawolf2357/flux-lora-military-artillery-k9",
21
- "openfree/claude-monet": "https://huggingface.co/openfree/claude-monet",
22
- "LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
23
- "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
24
- "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
25
- "ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
26
- "seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
27
- "moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
28
- "OnomaAIResearch/Illustrious-xl-early-release-v0": "https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0",
29
- "upstage/solar-pro-preview-instruct": "https://huggingface.co/upstage/solar-pro-preview-instruct",
30
- "NCSOFT/VARCO-VISION-14B": "https://huggingface.co/NCSOFT/VARCO-VISION-14B",
31
- "NCSOFT/Llama-VARCO-8B-Instruct": "https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct",
32
- "NCSOFT/VARCO-VISION-14B-HF": "https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF",
33
- "KAERI-MLP/llama-3.1-Korean-AtomicGPT-Bllossom-8B": "https://huggingface.co/KAERI-MLP/llama-3.1-Korean-AtomicGPT-Bllossom-8B",
34
- "dnotitia/Llama-DNA-1.0-8B-Instruct": "https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct",
35
- "Bllossom/llama-3.2-Korean-Bllossom-3B": "https://huggingface.co/Bllossom/llama-3.2-Korean-Bllossom-3B",
36
-
37
- "unidocs/llama-3.1-8b-komedic-instruct": "https://huggingface.co/unidocs/llama-3.1-8b-komedic-instruct",
38
- "unidocs/llama-3.2-3b-komedic-instruct": "https://huggingface.co/unidocs/llama-3.2-3b-komedic-instruct",
39
- "etri-lirs/eagle-3b-preview": "https://huggingface.co/etri-lirs/eagle-3b-preview",
40
- "kakaobrain/kogpt": "https://huggingface.co/kakaobrain/kogpt",
41
-
42
- "Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
43
- "AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
44
- "nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
45
- "Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
46
- "princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
47
- "migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
48
- "DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
49
- "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
50
- "ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
51
- "VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
52
- "Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
53
- "AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
54
- "mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
55
- "ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
56
- "migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
57
- "Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
58
- "mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
59
- "yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
60
- "vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
61
- "T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
62
- "Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
63
- "BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
64
- "BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
65
- "T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
66
- "BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
67
- "mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
68
- "hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
69
- "yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
70
- "algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
71
- "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
72
- "chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
73
- "vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
74
- "RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
75
- "SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
76
- "spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
77
- "BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
78
- "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
79
- "T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
80
- "migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
81
- "sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
82
- "MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
83
- "MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
84
- "zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
85
- "TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
86
- "OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
87
- "haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
88
- "Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
89
- "DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
90
- "vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
91
- "chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
92
- "lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
93
- "ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
94
- "princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
95
- "MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
96
- "chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
97
- "jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
98
- "DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
99
- "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
100
- "princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
101
- "AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
102
- "princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
103
- "maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
104
- "princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
105
- "princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
106
- "spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
107
- "princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
108
- "princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
109
- "lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
110
- "migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
111
- "megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
112
- "T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
113
- "maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
114
- "nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
115
- "abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
116
- "gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
117
- "BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
118
- "openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
119
- "T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
120
- "T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
121
- "ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
122
- "macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
123
- "openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
124
- "NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
125
- "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
126
- "MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
127
- "gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
128
- "VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
129
- "ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
130
- "SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
131
- "VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
132
- "MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
133
- "Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
134
- "cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
135
- "SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
136
- "4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
137
- "kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
138
- "ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
139
- "lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
140
- "BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
141
- "migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
142
- "BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
143
- "yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
144
- "vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
145
- "chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
146
- "Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
147
- "Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
148
- "SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
149
- "lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
150
- "GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
151
- "hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
152
- "etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
153
- "LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
154
- "chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
155
- "lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
156
- "chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
157
- "maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
158
- "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
159
- "hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
160
- "12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
161
- "hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
162
- "lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
163
- "chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
164
- "chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
165
- "lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
166
- "Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
167
- "princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
168
- "spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
169
- "natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
170
- "megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
171
- "01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
172
- "Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
173
- "Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
174
- "chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
175
- "hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
176
- "DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
177
- "GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
178
- "PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
179
- "vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
180
- "maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
181
- "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
182
- "lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
183
- "ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
184
- "maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
185
- "hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
186
- "werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
187
- "Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
188
- "maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
189
- "lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
190
- "VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
191
- "Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
192
- "Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
193
- "VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
194
- "NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
195
- "maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
196
- "GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
197
- "01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
198
- "ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
199
- "princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
200
- "hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
201
- "UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
202
- "yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
203
- "juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
204
- "gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
205
- "mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
206
- "maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
207
- "ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
208
- "juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
209
- "princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
210
- "moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
211
- "chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
212
- "Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
213
- "gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
214
- "saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
215
- "kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
216
- "maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
217
- "Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
218
- "vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
219
- "ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
220
- "beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
221
- "Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
222
- "spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
223
- "maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
224
- "T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
225
- "ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
226
- "hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
227
- "sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
228
- "4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
229
- "hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
230
- "Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
231
- "hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
232
- "uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
233
- "gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
234
- "shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
235
- "Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
236
- "AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
237
- "tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
238
- "realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
239
- "Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
240
- "GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
241
- "Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
242
- "AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
243
- "gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
244
- "jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
245
- "etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
246
- "ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
247
- "Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
248
- "Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
249
- "wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
250
- "momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
251
- "PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
252
- "BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
253
- "MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
254
- "failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
255
- "DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
256
- "kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
257
- "4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
258
- "4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
259
- "4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
260
- "PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
261
- "kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
262
- "ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
263
- "HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
264
- "nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
265
- "maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
266
- "yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
267
- "yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
268
- "daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
269
- "beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
270
- "jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
271
- "Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
272
- "01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
273
- "PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
274
- "nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
275
- "dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
276
- "shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
277
- "nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
278
- "ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
279
- "Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
280
- "heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
281
- "etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
282
- "OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
283
- "sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
284
- "Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
285
- "Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
286
- "heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
287
- "jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
288
- "DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
289
- "Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
290
- "migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
291
- "kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
292
- "kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
293
- "jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
294
- "Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
295
- "NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
296
- "kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
297
- "sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
298
- "NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
299
- "rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
300
- "Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
301
- "Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
302
- "tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
303
- "Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
304
- "richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
305
- "ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
306
- "heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
307
- "heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
308
- "shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
309
- "EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
310
- "kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
311
- "sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
312
- }
313
-
314
- def get_korea_models():
315
- """Korea 관련 모델 검색"""
316
- params = {
317
- "search": "korea",
318
- "full": "True",
319
- "config": "True",
320
- "limit": 1000
321
- }
322
-
323
- try:
324
- response = requests.get(
325
- "https://huggingface.co/api/models",
326
- headers={'Accept': 'application/json'},
327
- params=params
328
- )
329
-
330
- if response.status_code == 200:
331
- return response.json()
332
- else:
333
- print(f"Failed to fetch Korea models: {response.status_code}")
334
- return []
335
- except Exception as e:
336
- print(f"Error fetching Korea models: {str(e)}")
337
- return []
338
-
339
- def get_all_models(limit=3000):
340
- """모든 모델과 Korea 관련 모델 가져오기"""
341
- all_models = []
342
- page_size = 1000 # API의 한 번 요청당 최대 크기
343
-
344
- # 여러 페이지에 걸쳐 데이터 수집
345
- for offset in range(0, limit, page_size):
346
- params = {
347
- 'limit': min(page_size, limit - offset),
348
- 'full': 'True',
349
- 'config': 'True',
350
- 'offset': offset
351
- }
352
-
353
- response = requests.get(
354
- "https://huggingface.co/api/models",
355
- headers={'Accept': 'application/json'},
356
- params=params
357
- )
358
-
359
- if response.status_code == 200:
360
- all_models.extend(response.json())
361
- print(f"Fetched models {offset+1} to {offset+len(response.json())}")
362
- else:
363
- print(f"Failed to fetch models at offset {offset}: {response.status_code}")
364
- break
365
-
366
- # Korea 검색 결과도 동일하게 확장
367
- korea_params = {
368
- "search": "korea",
369
- "full": "True",
370
- "config": "True",
371
- "limit": limit
372
- }
373
-
374
- korea_response = requests.get(
375
- "https://huggingface.co/api/models",
376
- headers={'Accept': 'application/json'},
377
- params=korea_params
378
- )
379
-
380
- if korea_response.status_code == 200:
381
- korea_models = korea_response.json()
382
- print(f"Fetched {len(korea_models)} Korea-related models")
383
-
384
- # 중복 제거하면서 Korea 모델 추가
385
- existing_ids = {model.get('id', '') for model in all_models}
386
- for model in korea_models:
387
- if model.get('id', '') not in existing_ids:
388
- all_models.append(model)
389
- existing_ids.add(model.get('id', ''))
390
-
391
- print(f"Total unique models: {len(all_models)}")
392
- return all_models[:limit]
393
-
394
- def get_models_data(progress=gr.Progress()):
395
- def calculate_rank(model_id, all_global_models, korea_models):
396
- # 글로벌 순위 확인
397
- global_rank = next((idx for idx, m in enumerate(all_global_models, 1)
398
- if m.get('id', '').strip() == model_id.strip()), None)
399
-
400
- # Korea 모델인 경우
401
- is_korea = any(m.get('id', '').strip() == model_id.strip() for m in korea_models)
402
-
403
- if is_korea:
404
- # Korea 모델 중에서의 순위 확인
405
- korea_rank = next((idx for idx, m in enumerate(korea_models, 1)
406
- if m.get('id', '').strip() == model_id.strip()), None)
407
-
408
- if korea_rank:
409
- return min(global_rank or 3001, korea_rank + 1000), True
410
-
411
- return global_rank if global_rank else 'Not in top 3000', is_korea
412
-
413
- try:
414
- progress(0, desc="Fetching models...")
415
-
416
- if not HF_TOKEN:
417
- fig = create_error_plot()
418
- error_html = """
419
- <div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
420
- <h3 style='color: #c00;'>⚠️ API 인증이 필요합니다</h3>
421
- <p>HuggingFace API 토큰이 설정되지 않았습니다. 완전한 기능을 사용하기 위해서는 API 토큰이 필요합니다.</p>
422
- </div>
423
- """
424
- empty_df = pd.DataFrame(columns=['Global Rank', 'Model ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
425
- return fig, error_html, empty_df
426
-
427
- # 일반 모델과 Korea 관련 모델 모두 가져오기 (3000위까지)
428
- all_global_models = get_all_models(limit=3000)
429
- korea_models = get_korea_models()
430
-
431
- print(f"Total global models fetched: {len(all_global_models)}")
432
- print(f"Total Korea models fetched: {len(korea_models)}")
433
-
434
- # 모든 모델 통합 (중복 제거)
435
- all_models = all_global_models.copy()
436
- existing_ids = {model.get('id', '') for model in all_global_models}
437
-
438
- added_korea_models = 0
439
- for korea_model in korea_models:
440
- if korea_model.get('id', '') not in existing_ids:
441
- all_models.append(korea_model)
442
- existing_ids.add(korea_model.get('id', ''))
443
- added_korea_models += 1
444
-
445
- print(f"Added {added_korea_models} unique Korea models")
446
- print(f"Total combined models: {len(all_models)}")
447
-
448
- # 시각화를 위한 Figure 생성
449
- fig = go.Figure()
450
-
451
- # 순위 정보 수집
452
- filtered_models = []
453
- for model_id in target_models.keys():
454
- try:
455
- normalized_id = model_id.strip('/')
456
- model_url_api = f"https://huggingface.co/api/models/{normalized_id}"
457
- response = requests.get(
458
- model_url_api,
459
- headers={'Accept': 'application/json'}
460
- )
461
-
462
- if response.status_code == 200:
463
- model_data = response.json()
464
- rank, is_korea = calculate_rank(model_id, all_global_models, korea_models)
465
-
466
- filtered_models.append({
467
- 'id': model_id,
468
- 'global_rank': rank,
469
- 'downloads': model_data.get('downloads', 0),
470
- 'likes': model_data.get('likes', 0),
471
- 'title': model_data.get('title', 'No Title'),
472
- 'is_korea': is_korea
473
- })
474
-
475
- print(f"Model {model_id}: Rank={rank}, Is Korea={is_korea}")
476
- else:
477
- filtered_models.append({
478
- 'id': model_id,
479
- 'global_rank': 'Not in top 3000',
480
- 'downloads': 0,
481
- 'likes': 0,
482
- 'title': 'No Title',
483
- 'is_korea': False
484
- })
485
- except Exception as e:
486
- print(f"Error processing {model_id}: {str(e)}")
487
- continue
488
-
489
- # 순위로 정렬
490
- filtered_models.sort(key=lambda x: float('inf') if isinstance(x['global_rank'], str) else x['global_rank'])
491
-
492
- # 시각화 데이터 준비
493
- valid_models = [m for m in filtered_models if isinstance(m['global_rank'], (int, float))]
494
-
495
- if valid_models:
496
- ids = [m['id'] for m in valid_models]
497
- ranks = [m['global_rank'] for m in valid_models]
498
-
499
- fig.add_trace(go.Bar(
500
- x=ids,
501
- y=[3001 - r for r in ranks], # Y축 범위 3000까지 확장
502
- text=[f"Rank: #{r}<br>Downloads: {format(m['downloads'], ',')}<br>Likes: {format(m['likes'], ',')}"
503
- for r, m in zip(ranks, valid_models)],
504
- textposition='auto',
505
- marker_color=['rgba(255,0,0,0.6)' if m['is_korea'] else 'rgba(0,0,255,0.6)'
506
- for m in valid_models],
507
- opacity=0.8
508
- ))
509
-
510
- fig.update_layout(
511
- title="HuggingFace Models Global Rankings (Up to #3000)",
512
- xaxis_title="Model ID",
513
- yaxis_title="Global Rank",
514
- yaxis=dict(
515
- ticktext=[f"#{i}" for i in range(1, 3001, 100)],
516
- tickvals=[3001 - i for i in range(1, 3001, 100)],
517
- range=[0, 3000]
518
- ),
519
- height=800,
520
- showlegend=False,
521
- template='plotly_white',
522
- xaxis_tickangle=-45
523
- )
524
-
525
- # HTML 카드 생성
526
- html_content = """
527
- <div style='padding: 20px; background: #f5f5f5;'>
528
- <h2 style='color: #2c3e50;'>Models Rankings (Up to #3000)</h2>
529
- <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
530
- """
531
-
532
- for model in filtered_models:
533
- rank_display = f"Global Rank #{model['global_rank']}" if isinstance(model['global_rank'], (int, float)) else "Not in top 3000"
534
- korea_badge = "🇰🇷 Korea Search Result" if model['is_korea'] else ""
535
-
536
- html_content += f"""
537
- <div style='
538
- background: white;
539
- padding: 20px;
540
- border-radius: 10px;
541
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
542
- transition: transform 0.2s;
543
- {f"border: 2px solid #e74c3c;" if model['is_korea'] else ""}
544
- '>
545
- <h3 style='color: #34495e;'>{rank_display}</h3>
546
- <h4 style='color: #2c3e50;'>{model['id']}</h4>
547
- <p style='color: #e74c3c; font-weight: bold;'>{korea_badge}</p>
548
- <p style='color: #7f8c8d;'>⬇️ Downloads: {format(model['downloads'], ',')}</p>
549
- <p style='color: #7f8c8d;'>👍 Likes: {format(model['likes'], ',')}</p>
550
- <a href='{target_models[model['id']]}'
551
- target='_blank'
552
- style='
553
- display: inline-block;
554
- padding: 8px 16px;
555
- background: #3498db;
556
- color: white;
557
- text-decoration: none;
558
- border-radius: 5px;
559
- transition: background 0.3s;
560
- '>
561
- Visit Model 🔗
562
- </a>
563
- </div>
564
- """
565
-
566
- html_content += "</div></div>"
567
-
568
- # 데이터프레임 생성
569
- df = pd.DataFrame([{
570
- 'Global Rank': f"#{m['global_rank']}" if isinstance(m['global_rank'], (int, float)) else m['global_rank'],
571
- 'Model ID': m['id'],
572
- 'Title': m['title'],
573
- 'Downloads': format(m['downloads'], ','),
574
- 'Likes': format(m['likes'], ','),
575
- 'Korea Search': '🇰🇷' if m['is_korea'] else '',
576
- 'URL': target_models[m['id']]
577
- } for m in filtered_models])
578
-
579
- progress(1.0, desc="Complete!")
580
- return fig, html_content, df
581
-
582
- except Exception as e:
583
- print(f"Error in get_models_data: {str(e)}")
584
- error_fig = create_error_plot()
585
- error_html = f"""
586
- <div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
587
- <h3 style='color: #c00;'>⚠️ 오류가 발생했습니다</h3>
588
- <p>{str(e)}</p>
589
- </div>
590
- """
591
- empty_df = pd.DataFrame(columns=['Global Rank', 'Model ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
592
- return error_fig, error_html, empty_df
593
-
594
-
595
- # 관심 스페이스 URL 리스트와 정보
596
- target_spaces = {
597
-
598
-
599
- "openfree/OCR-FLEX": "https://huggingface.co/spaces/openfree/OCR-FLEX",
600
- "openfree/MoneyRadar2-KR": "https://huggingface.co/spaces/openfree/MoneyRadar2-KR",
601
-
602
- "immunobiotech/MICHELIN-Genesis": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis",
603
- "immunobiotech/MICHELIN-Genesis-kr": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis-kr",
604
- "immunobiotech/MICHELIN-Genesis-CN": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis-CN",
605
- "immunobiotech/MICHELIN-Genesis-JP": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis-JP",
606
- "ginipick/PharmAI-kr": "https://huggingface.co/spaces/ginipick/PharmAI-kr",
607
-
608
- "aiqcamp/MindMap": "https://huggingface.co/spaces/aiqcamp/MindMap",
609
- "ginigen/3D-LLAMA": "https://huggingface.co/spaces/ginigen/3D-LLAMA",
610
- "openfree/VectorFlow": "https://huggingface.co/spaces/openfree/VectorFlow",
611
- "ginigen/Multi-LoRA-gen": "https://huggingface.co/spaces/ginigen/Multi-LoRA-gen",
612
- "openfree/webtoon-gen": "https://huggingface.co/spaces/openfree/webtoon-gen",
613
- "VIDraft/topic-prediction": "https://huggingface.co/spaces/VIDraft/topic-prediction",
614
- "VIDraft/mouse-web": "https://huggingface.co/spaces/VIDraft/mouse-web",
615
- "openfree/MoneyRadar2": "https://huggingface.co/spaces/openfree/MoneyRadar2",
616
- "openfree/trending-board-2025": "https://huggingface.co/spaces/openfree/trending-board-2025",
617
- "VIDraft/PapersImpact": "https://huggingface.co/spaces/VIDraft/PapersImpact",
618
- "VIDraft/EveryRAG": "https://huggingface.co/spaces/VIDraft/EveryRAG",
619
- "fantaxy/novel-NSFW": "https://huggingface.co/spaces/fantaxy/novel-NSFW",
620
- "fantaxy/novel-kungfu-eng": "https://huggingface.co/spaces/fantaxy/novel-kungfu-eng",
621
- "fantaxy/novel-romance-eng": "https://huggingface.co/spaces/fantaxy/novel-romance-eng",
622
- "fantaxy/novel-fantasy-eng": "https://huggingface.co/spaces/fantaxy/novel-fantasy-eng",
623
- "fantaxy/erotic": "https://huggingface.co/spaces/fantaxy/erotic",
624
- "ginipick/Any3D": "https://huggingface.co/spaces/ginipick/Any3D",
625
- "ginigen/Canvas-pro": "https://huggingface.co/spaces/ginigen/Canvas-pro",
626
- "VIDraft/korea-president-DJ": "https://huggingface.co/spaces/VIDraft/korea-president-DJ",
627
- "VIDraft/korea-president-PARK": "https://huggingface.co/spaces/VIDraft/korea-president-PARK",
628
- "openfree/image-to-vector": "https://huggingface.co/spaces/openfree/image-to-vector",
629
- "ginipick/QR-Canvas-plus": "https://huggingface.co/spaces/ginipick/QR-Canvas-plus",
630
- "ginigen/text3d-R1": "https://huggingface.co/spaces/ginigen/text3d-R1",
631
- "openfree/MagicFace-V3": "https://huggingface.co/spaces/openfree/MagicFace-V3",
632
- "immunobiotech/drug-discover": "https://huggingface.co/spaces/immunobiotech/drug-discover",
633
- "openfree/Korean-Leaderboard-2025": "https://huggingface.co/spaces/openfree/Korean-Leaderboard-2025",
634
- "ginipick/DeepSeekR1-LIVE": "https://huggingface.co/spaces/ginipick/DeepSeekR1-LIVE",
635
- "ginipick/like-history": "https://huggingface.co/spaces/ginipick/like-history",
636
- "ginigen/ColPali-multi": "https://huggingface.co/spaces/ginigen/ColPali-multi",
637
- "ginigen/Janus-Pro-7B": "https://huggingface.co/spaces/ginigen/Janus-Pro-7B",
638
- "ginigen/Animagine": "https://huggingface.co/spaces/ginigen/Animagine",
639
- "ginigen/Sign-language": "https://huggingface.co/spaces/ginigen/Sign-language",
640
- "ginipick/OpenSUNO": "https://huggingface.co/spaces/ginipick/OpenSUNO",
641
- "openfree/PDF-RAG": "https://huggingface.co/spaces/openfree/PDF-RAG",
642
- "fantos/Ranking-Tracker": "https://huggingface.co/spaces/fantos/Ranking-Tracker",
643
- "aiqcamp/Multilingual-Images": "https://huggingface.co/spaces/aiqcamp/Multilingual-Images",
644
- "aiqcamp/Gemini2-Flash-Thinking": "https://huggingface.co/spaces/aiqcamp/Gemini2-Flash-Thinking",
645
- "fantaxy/novel-sorim-en": "https://huggingface.co/spaces/fantaxy/novel-sorim-en",
646
- "fantaxy/novel-NSFW-en": "https://huggingface.co/spaces/fantaxy/novel-NSFW-en",
647
- "fantaxy/novel-fantasy-en": "https://huggingface.co/spaces/fantaxy/novel-fantasy-en",
648
- "fantaxy/novel-romance-en": "https://huggingface.co/spaces/fantaxy/novel-romance-en",
649
- "kolaslab/8bit-gamemusic": "https://huggingface.co/spaces/kolaslab/8bit-gamemusic",
650
- "openfree/pepe": "https://huggingface.co/spaces/openfree/pepe",
651
- "openfree/MoneyRadar": "https://huggingface.co/spaces/openfree/MoneyRadar",
652
- "ginipick/QR-Canvas": "https://huggingface.co/spaces/ginipick/QR-Canvas",
653
- "openfree/MagicFace": "https://huggingface.co/spaces/openfree/MagicFace",
654
- "openfree/pick-spaces": "https://huggingface.co/spaces/openfree/pick-spaces",
655
- "aiqcamp/diagram": "https://huggingface.co/spaces/aiqcamp/diagram",
656
- "openfree/korea-president-yoon": "https://huggingface.co/spaces/openfree/korea-president-yoon",
657
- "VIDraft/PaperImpact": "https://huggingface.co/spaces/VIDraft/PaperImpact",
658
- "openfree/CryptoVision": "https://huggingface.co/spaces/openfree/CryptoVision",
659
- "gunship999/Gunship-3D-FPS": "https://huggingface.co/spaces/gunship999/Gunship-3D-FPS",
660
- "fantos/VoiceClone": "https://huggingface.co/spaces/fantos/VoiceClone",
661
- "VIDraft/ChemGenesis": "https://huggingface.co/spaces/VIDraft/ChemGenesis",
662
- "seawolf2357/ocrlatex": "https://huggingface.co/spaces/seawolf2357/ocrlatex",
663
- "seawolf2357/img2vid": "https://huggingface.co/spaces/seawolf2357/img2vid",
664
- "seawolf2357/sd-prompt-gen": "https://huggingface.co/spaces/seawolf2357/sd-prompt-gen",
665
- "openfree/badassgi": "https://huggingface.co/spaces/openfree/badassgi",
666
- "openfree/tarotcard": "https://huggingface.co/spaces/openfree/tarotcard",
667
- "openfree/drqxab": "https://huggingface.co/spaces/openfree/drqxab",
668
- "aiqcamp/Polaroid": "https://huggingface.co/spaces/aiqcamp/Polaroid",
669
- "ginigen/cartoon": "https://huggingface.co/spaces/ginigen/cartoon",
670
- "ginigen/Book-Cover": "https://huggingface.co/spaces/ginigen/Book-Cover",
671
- "aiqcamp/fash": "https://huggingface.co/spaces/aiqcamp/fash",
672
- "gunship999/Korea-Daily-News": "https://huggingface.co/spaces/gunship999/Korea-Daily-News",
673
- "kolaslab/Quantum": "https://huggingface.co/spaces/kolaslab/Quantum",
674
- "openfree/webtoon": "https://huggingface.co/spaces/openfree/webtoon",
675
- "immunobiotech/ChicagoGallery": "https://huggingface.co/spaces/immunobiotech/ChicagoGallery",
676
- "immunobiotech/MetropolitanMuseum": "https://huggingface.co/spaces/immunobiotech/MetropolitanMuseum",
677
- "immunobiotech/opensky": "https://huggingface.co/spaces/immunobiotech/opensky",
678
- "kolaslab/Audio-Visualizer": "https://huggingface.co/spaces/kolaslab/Audio-Visualizer",
679
- "kolaslab/Radio-Learning": "https://huggingface.co/spaces/kolaslab/Radio-Learning",
680
- "kolaslab/Future-Gallaxy": "https://huggingface.co/spaces/kolaslab/Future-Gallaxy",
681
- "openfree/ProteinGenesis": "https://huggingface.co/spaces/openfree/ProteinGenesis",
682
- "openfree/2025saju": "https://huggingface.co/spaces/openfree/2025saju",
683
- "ginigen/Dokdo-membership": "https://huggingface.co/spaces/ginigen/Dokdo-membership",
684
- "VIDraft/eum": "https://huggingface.co/spaces/VIDraft/eum",
685
- "kolaslab/VisionART": "https://huggingface.co/spaces/kolaslab/VisionART",
686
- "aiqtech/FLUX-military": "https://huggingface.co/spaces/aiqtech/FLUX-military",
687
- "fantaxy/Rolls-Royce": "https://huggingface.co/spaces/fantaxy/Rolls-Royce",
688
- "seawolf2357/flux-korea-hanbok-lora": "https://huggingface.co/spaces/seawolf2357/flux-korea-hanbok-lora",
689
- "seawolf2357/flux-korea-palace-lora": "https://huggingface.co/spaces/seawolf2357/flux-korea-palace-lora",
690
- "aiqcamp/flux-cat-lora": "https://huggingface.co/spaces/aiqcamp/flux-cat-lora",
691
- "gunship999/SexyImages": "https://huggingface.co/spaces/gunship999/SexyImages",
692
- "aiqtech/flux-claude-monet-lora": "https://huggingface.co/spaces/aiqtech/flux-claude-monet-lora",
693
- "ginigen/CANVAS-o3": "https://huggingface.co/spaces/ginigen/CANVAS-o3",
694
- "kolaslab/world-sdr": "https://huggingface.co/spaces/kolaslab/world-sdr",
695
- "seawolf2357/3D-Avatar-Generator": "https://huggingface.co/spaces/seawolf2357/3D-Avatar-Generator",
696
- "fantaxy/playground25": "https://huggingface.co/spaces/fantaxy/playground25",
697
- "openfree/ultpixgen": "https://huggingface.co/spaces/openfree/ultpixgen",
698
- "kolaslab/VISION-NIGHT": "https://huggingface.co/spaces/kolaslab/VISION-NIGHT",
699
- "kolaslab/FLUX-WEB": "https://huggingface.co/spaces/kolaslab/FLUX-WEB",
700
- "seawolf2357/REALVISXL-V5": "https://huggingface.co/spaces/seawolf2357/REALVISXL-V5",
701
- "ginipick/Dokdo-multimodal": "https://huggingface.co/spaces/ginipick/Dokdo-multimodal",
702
- "ginigen/theater": "https://huggingface.co/spaces/ginigen/theater",
703
- "VIDraft/stock": "https://huggingface.co/spaces/VIDraft/stock",
704
- "fantos/flxcontrol": "https://huggingface.co/spaces/fantos/flxcontrol",
705
- "fantos/textcutobject": "https://huggingface.co/spaces/fantos/textcutobject",
706
- "ginipick/FLUX-Prompt-Generator": "https://huggingface.co/spaces/ginipick/FLUX-Prompt-Generator",
707
- "fantaxy/flxloraexp": "https://huggingface.co/spaces/fantaxy/flxloraexp",
708
- "fantos/flxloraexp": "https://huggingface.co/spaces/fantos/flxloraexp",
709
- "seawolf2357/flxloraexp": "https://huggingface.co/spaces/seawolf2357/flxloraexp",
710
- "ginipick/flxloraexp": "https://huggingface.co/spaces/ginipick/flxloraexp",
711
- "ginipick/FLUX-Prompt-Generator": "https://huggingface.co/spaces/ginipick/FLUX-Prompt-Generator",
712
- "ginigen/Dokdo": "https://huggingface.co/spaces/ginigen/Dokdo",
713
- "aiqcamp/imagemagic": "https://huggingface.co/spaces/aiqcamp/imagemagic",
714
- "openfree/ColorRevive": "https://huggingface.co/spaces/openfree/ColorRevive",
715
- "VIDraft/RAGOndevice": "https://huggingface.co/spaces/VIDraft/RAGOndevice",
716
- "gunship999/Radar-Bluetooth": "https://huggingface.co/spaces/gunship999/Radar-Bluetooth",
717
- "gunship999/WiFi-VISION": "https://huggingface.co/spaces/gunship999/WiFi-VISION",
718
- "gunship999/SONAR-Radar": "https://huggingface.co/spaces/gunship999/SONAR-Radar",
719
- "aiqcamp/AudioLlama": "https://huggingface.co/spaces/aiqcamp/AudioLlama",
720
- "ginigen/FLUXllama-Multilingual": "https://huggingface.co/spaces/ginigen/FLUXllama-Multilingual",
721
- "ginipick/ginimedi": "https://huggingface.co/spaces/ginipick/ginimedi",
722
- "ginipick/ginilaw": "https://huggingface.co/spaces/ginipick/ginilaw",
723
- "ginipick/ginipharm": "https://huggingface.co/spaces/ginipick/ginipharm",
724
- "ginipick/FitGen": "https://huggingface.co/spaces/ginipick/FitGen",
725
- "fantaxy/FLUX-Animations": "https://huggingface.co/spaces/fantaxy/FLUX-Animations",
726
- "fantaxy/Remove-Video-Background": "https://huggingface.co/spaces/fantaxy/Remove-Video-Background",
727
- "fantaxy/ofai-flx-logo": "https://huggingface.co/spaces/fantaxy/ofai-flx-logo",
728
- "fantaxy/flx-pulid": "https://huggingface.co/spaces/fantaxy/flx-pulid",
729
- "fantaxy/flx-upscale": "https://huggingface.co/spaces/fantaxy/flx-upscale",
730
- "aiqcamp/Fashion-FLUX": "https://huggingface.co/spaces/aiqcamp/Fashion-FLUX",
731
- "ginipick/StyleGen": "https://huggingface.co/spaces/ginipick/StyleGen",
732
- "openfree/StoryStar": "https://huggingface.co/spaces/openfree/StoryStar",
733
- "fantos/x-mas": "https://huggingface.co/spaces/fantos/x-mas",
734
- "openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
735
- "ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
736
- "ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
737
- "fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
738
- "fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
739
- "ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
740
- "fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
741
- "ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
742
- "aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
743
- "openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
744
- "openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
745
- "VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
746
- "kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
747
- "ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
748
- "openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
749
- "cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
750
- "openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
751
- "VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
752
- "ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
753
- "aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
754
- "openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
755
- "kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
756
- "openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
757
- "ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
758
- "VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
759
- "kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
760
- "fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
761
- "kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
762
- "VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
763
- "aiqmaster/stocksimulation": "https://huggingface.co/spaces/aiqmaster/stocksimulation",
764
- "aiqmaster/assetai": "https://huggingface.co/spaces/aiqmaster/assetai",
765
- "aiqmaster/stockai": "https://huggingface.co/spaces/aiqmaster/stockai",
766
- "cutechicken/TankWar3D": "https://huggingface.co/spaces/cutechicken/TankWar3D",
767
- "kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
768
- "kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
769
- "kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
770
- "aiqtech/kofaceid": "https://huggingface.co/spaces/aiqtech/kofaceid",
771
- "fantaxy/fastvideogena": "https://huggingface.co/spaces/fantaxy/fastvideogen",
772
- "fantos/cogvidx": "https://huggingface.co/spaces/fantos/cogvidx",
773
- "fantos/flxfashmodel": "https://huggingface.co/spaces/fantos/flxfashmodel",
774
- "fantos/kolcontrl": "https://huggingface.co/spaces/fantos/kolcontrl",
775
- "fantos/EveryText": "https://huggingface.co/spaces/fantos/EveryText",
776
- "aiqtech/cinevid": "https://huggingface.co/spaces/aiqtech/cinevid",
777
- "aiqtech/FLUX-Ghibli-Studio-LoRA": "https://huggingface.co/spaces/aiqtech/FLUX-Ghibli-Studio-LoRA",
778
- "aiqtech/flxgif": "https://huggingface.co/spaces/aiqtech/flxgif",
779
- "aiqtech/imaginpaint": "https://huggingface.co/spaces/aiqtech/imaginpaint",
780
-
781
-
782
- "upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
783
- "LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
784
- "LeeSangHoon/HierSpeech_TTS": "https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS",
785
- "etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
786
- "etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
787
- "naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",
788
- "NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
789
- }
790
-
791
- def get_spaces_data(sort_type="trending", progress=gr.Progress()):
792
- """스페이스 데이터 가져오기 (trending 또는 modes)"""
793
- url = "https://huggingface.co/api/spaces"
794
- params = {
795
- 'full': 'true',
796
- 'limit': 500
797
- }
798
-
799
- if sort_type == "modes":
800
- params['sort'] = 'likes'
801
-
802
- try:
803
- progress(0, desc=f"Fetching {sort_type} spaces data...")
804
- response = requests.get(url, params=params)
805
- response.raise_for_status()
806
- all_spaces = response.json()
807
-
808
- # 순위 정보 저장
809
- space_ranks = {}
810
- for idx, space in enumerate(all_spaces, 1):
811
- space_id = space.get('id', '')
812
- if space_id in target_spaces:
813
- space['rank'] = idx
814
- space_ranks[space_id] = space
815
-
816
- spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
817
- spaces.sort(key=lambda x: x['rank'])
818
-
819
- progress(0.3, desc="Creating visualization...")
820
-
821
- # 시각화 생성
822
- fig = go.Figure()
823
-
824
- # 데이터 준비
825
- ids = [space['id'] for space in spaces]
826
- ranks = [space['rank'] for space in spaces]
827
- likes = [space.get('likes', 0) for space in spaces]
828
- titles = [space.get('cardData', {}).get('title') or space.get('title', 'No Title') for space in spaces]
829
-
830
- # 막대 그래프 생성
831
- fig.add_trace(go.Bar(
832
- x=ids,
833
- y=ranks,
834
- text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}"
835
- for r, t, l in zip(ranks, titles, likes)],
836
- textposition='auto',
837
- marker_color='rgb(158,202,225)',
838
- opacity=0.8
839
- ))
840
-
841
- fig.update_layout(
842
- title={
843
- 'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 500)',
844
- 'y':0.95,
845
- 'x':0.5,
846
- 'xanchor': 'center',
847
- 'yanchor': 'top'
848
- },
849
- xaxis_title='Space ID',
850
- yaxis_title='Rank',
851
- yaxis=dict(
852
- autorange='reversed', # Y축을 반전
853
- tickmode='array',
854
- ticktext=[str(i) for i in range(1, 501, 20)], # 1부터 400까지 20 간격으로 표시
855
- tickvals=[i for i in range(1, 501, 20)],
856
- range=[1, 500] # Y축 범위를 1부터 400까지로 설정
857
- ),
858
- height=800,
859
- showlegend=False,
860
- template='plotly_white',
861
- xaxis_tickangle=-45
862
- )
863
-
864
- progress(0.6, desc="Creating space cards...")
865
-
866
- # HTML 카드 생성
867
- html_content = f"""
868
- <div style='padding: 20px; background: #f5f5f5;'>
869
- <h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
870
- <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
871
- """
872
-
873
- for space in spaces:
874
- space_id = space['id']
875
- rank = space['rank']
876
- title = space.get('cardData', {}).get('title') or space.get('title', 'No Title')
877
- likes = space.get('likes', 0)
878
-
879
- html_content += f"""
880
- <div style='
881
- background: white;
882
- padding: 20px;
883
- border-radius: 10px;
884
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
885
- transition: transform 0.2s;
886
- '>
887
- <h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
888
- <h4 style='
889
- color: #2980b9;
890
- margin: 10px 0;
891
- font-size: 1.2em;
892
- font-weight: bold;
893
- text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
894
- background: linear-gradient(to right, #3498db, #2980b9);
895
- -webkit-background-clip: text;
896
- -webkit-text-fill-color: transparent;
897
- padding: 5px 0;
898
- '>{title}</h4>
899
- <p style='color: #7f8c8d; margin-bottom: 10px;'>👍 Likes: {likes}</p>
900
- <a href='{target_spaces[space_id]}'
901
- target='_blank'
902
- style='
903
- display: inline-block;
904
- padding: 8px 16px;
905
- background: #3498db;
906
- color: white;
907
- text-decoration: none;
908
- border-radius: 5px;
909
- transition: background 0.3s;
910
- '>
911
- Visit Space 🔗
912
- </a>
913
- </div>
914
- """
915
-
916
- html_content += "</div></div>"
917
-
918
- # 데이터프레임 생성
919
- df = pd.DataFrame([{
920
- 'Rank': space['rank'],
921
- 'Space ID': space['id'],
922
- 'Title': space.get('cardData', {}).get('title') or space.get('title', 'No Title'),
923
- 'Likes': space.get('likes', 0),
924
- 'URL': target_spaces[space['id']]
925
- } for space in spaces])
926
-
927
- progress(1.0, desc="Complete!")
928
- return fig, html_content, df
929
-
930
- except Exception as e:
931
- print(f"Error in get_spaces_data: {str(e)}")
932
- error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
933
- error_plot = create_error_plot()
934
- return error_plot, error_html, pd.DataFrame()
935
-
936
-
937
- def create_trend_visualization(spaces_data):
938
- if not spaces_data:
939
- return create_error_plot()
940
-
941
- fig = go.Figure()
942
-
943
- # 순위 데이터 준비
944
- ranks = []
945
- for idx, space in enumerate(spaces_data, 1):
946
- space_id = space.get('id', '')
947
- if space_id in target_spaces:
948
- ranks.append({
949
- 'id': space_id,
950
- 'rank': idx,
951
- 'likes': space.get('likes', 0),
952
- 'title': space.get('title', 'N/A'),
953
- 'views': space.get('views', 0)
954
- })
955
-
956
- if not ranks:
957
- return create_error_plot()
958
-
959
- # 순위별로 정렬
960
- ranks.sort(key=lambda x: x['rank'])
961
-
962
- # 플롯 데이터 생성
963
- ids = [r['id'] for r in ranks]
964
- rank_values = [r['rank'] for r in ranks]
965
- likes = [r['likes'] for r in ranks]
966
- views = [r['views'] for r in ranks]
967
-
968
- # 막대 그래프 생성
969
- fig.add_trace(go.Bar(
970
- x=ids,
971
- y=rank_values,
972
- text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
973
- textposition='auto',
974
- marker_color='rgb(158,202,225)',
975
- opacity=0.8
976
- ))
977
-
978
- fig.update_layout(
979
- title={
980
- 'text': 'Current Trending Ranks (All Target Spaces)',
981
- 'y':0.95,
982
- 'x':0.5,
983
- 'xanchor': 'center',
984
- 'yanchor': 'top'
985
- },
986
- xaxis_title='Space ID',
987
- yaxis_title='Trending Rank',
988
- yaxis_autorange='reversed',
989
- height=800,
990
- showlegend=False,
991
- template='plotly_white',
992
- xaxis_tickangle=-45
993
- )
994
-
995
- return fig
996
-
997
- # 토큰이 없는 경우를 위한 대체 함수
998
- def get_trending_spaces_without_token():
999
- try:
1000
- url = "https://huggingface.co/api/spaces"
1001
- params = {
1002
- 'sort': 'likes',
1003
- 'direction': -1,
1004
- 'limit': 500,
1005
- 'full': 'true'
1006
- }
1007
-
1008
- response = requests.get(url, params=params)
1009
-
1010
- if response.status_code == 200:
1011
- return response.json()
1012
- else:
1013
- print(f"API 요청 실패 (토큰 없음): {response.status_code}")
1014
- print(f"Response: {response.text}")
1015
- return None
1016
- except Exception as e:
1017
- print(f"API 호출 중 에러 발생 (토큰 없음): {str(e)}")
1018
- return None
1019
-
1020
- # API 토큰 설정 및 함수 선택
1021
- if not HF_TOKEN:
1022
- get_trending_spaces = get_trending_spaces_without_token
1023
-
1024
-
1025
-
1026
- def create_error_plot():
1027
- fig = go.Figure()
1028
- fig.add_annotation(
1029
- text="데이터를 불러올 수 없습니다.\n(API 인증이 필요합니다)",
1030
- xref="paper",
1031
- yref="paper",
1032
- x=0.5,
1033
- y=0.5,
1034
- showarrow=False,
1035
- font=dict(size=20)
1036
- )
1037
- fig.update_layout(
1038
- title="Error Loading Data",
1039
- height=400
1040
- )
1041
- return fig
1042
-
1043
-
1044
- def create_space_info_html(spaces_data):
1045
- if not spaces_data:
1046
- return "<div style='padding: 20px;'><h2>데이터를 불러오는데 실패했습니다.</h2></div>"
1047
-
1048
- html_content = """
1049
- <div style='padding: 20px;'>
1050
- <h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
1051
- <div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
1052
- """
1053
-
1054
- # 모든 target spaces를 포함하도록 수정
1055
- for space_id in target_spaces.keys():
1056
- space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
1057
- if space_info:
1058
- rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
1059
- html_content += f"""
1060
- <div style='
1061
- background: white;
1062
- padding: 20px;
1063
- border-radius: 10px;
1064
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
1065
- transition: transform 0.2s;
1066
- '>
1067
- <h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
1068
- <p style='color: #7f8c8d;'>👍 Likes: {space_info.get('likes', 'N/A')}</p>
1069
- <p style='color: #7f8c8d;'>👀 Views: {space_info.get('views', 'N/A')}</p>
1070
- <p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
1071
- <p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
1072
- <a href='{target_spaces[space_id]}'
1073
- target='_blank'
1074
- style='
1075
- display: inline-block;
1076
- padding: 8px 16px;
1077
- background: #3498db;
1078
- color: white;
1079
- text-decoration: none;
1080
- border-radius: 5px;
1081
- transition: background 0.3s;
1082
- '>
1083
- Visit Space 🔗
1084
- </a>
1085
- </div>
1086
- """
1087
- else:
1088
- html_content += f"""
1089
- <div style='
1090
- background: #f8f9fa;
1091
- padding: 20px;
1092
- border-radius: 10px;
1093
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
1094
- '>
1095
- <h3 style='color: #34495e;'>{space_id}</h3>
1096
- <p style='color: #7f8c8d;'>Not in trending</p>
1097
- <a href='{target_spaces[space_id]}'
1098
- target='_blank'
1099
- style='
1100
- display: inline-block;
1101
- padding: 8px 16px;
1102
- background: #95a5a6;
1103
- color: white;
1104
- text-decoration: none;
1105
- border-radius: 5px;
1106
- '>
1107
- Visit Space 🔗
1108
- </a>
1109
- </div>
1110
- """
1111
-
1112
- html_content += "</div></div>"
1113
- return html_content
1114
-
1115
- def create_data_table(spaces_data):
1116
- if not spaces_data:
1117
- return pd.DataFrame()
1118
-
1119
- rows = []
1120
- for idx, space in enumerate(spaces_data, 1):
1121
- space_id = space.get('id', '')
1122
- if space_id in target_spaces:
1123
- rows.append({
1124
- 'Rank': idx,
1125
- 'Space ID': space_id,
1126
- 'Likes': space.get('likes', 'N/A'),
1127
- 'Title': space.get('title', 'N/A'),
1128
- 'URL': target_spaces[space_id]
1129
- })
1130
-
1131
- return pd.DataFrame(rows)
1132
-
1133
- def refresh_data():
1134
- spaces_data = get_trending_spaces()
1135
- if spaces_data:
1136
- plot = create_trend_visualization(spaces_data)
1137
- info = create_space_info_html(spaces_data)
1138
- df = create_data_table(spaces_data)
1139
- return plot, info, df
1140
- else:
1141
- return create_error_plot(), "<div>API 인증이 필요합니다.</div>", pd.DataFrame()
1142
-
1143
-
1144
-
1145
- def create_registration_bar_chart(data, type_name="Spaces"):
1146
- try:
1147
- # TOP 기준 설정
1148
- top_limit = 500 if type_name == "Spaces" else 3000
1149
-
1150
- # DataFrame인 경우 처리
1151
- if isinstance(data, pd.DataFrame):
1152
- if type_name == "Models":
1153
- # 3000위 이내의 모델만 필터링
1154
- data = data[data['Global Rank'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.startswith('#')))]
1155
- data = data[data['Global Rank'].apply(lambda x: int(str(x).replace('#', '')) if isinstance(x, str) else x) <= top_limit]
1156
- elif type_name == "Spaces":
1157
- # 500위 이내의 스페이스만 필터링
1158
- data = data[data['Rank'].apply(lambda x: isinstance(x, (int, float))) & (data['Rank'] <= top_limit)]
1159
-
1160
- # ID 컬럼 선택
1161
- id_column = 'Space ID' if type_name == "Spaces" else 'Model ID'
1162
- registrations = data[id_column].apply(lambda x: x.split('/')[0]).value_counts()
1163
- else:
1164
- # 리스트나 다른 형태의 데이터인 경우 처리
1165
- registrations = {}
1166
- for item in data:
1167
- if isinstance(item, dict):
1168
- rank = item.get('global_rank' if type_name == "Models" else 'rank')
1169
- if isinstance(rank, str) or rank > top_limit:
1170
- continue
1171
- creator = item.get('id', '').split('/')[0]
1172
- registrations[creator] = registrations.get(creator, 0) + 1
1173
- registrations = pd.Series(registrations)
1174
-
1175
- # 정렬된 데이터 준비
1176
- registrations = registrations.sort_values(ascending=False)
1177
-
1178
- fig = go.Figure(data=[go.Bar(
1179
- x=registrations.index,
1180
- y=registrations.values,
1181
- text=registrations.values,
1182
- textposition='auto',
1183
- marker_color='#FF6B6B'
1184
- )])
1185
-
1186
- fig.update_layout(
1187
- title=f"Korean {type_name} Registrations by Creator (Top {top_limit})",
1188
- xaxis_title="Creator ID",
1189
- yaxis_title="Number of Registrations",
1190
- showlegend=False,
1191
- height=400,
1192
- width=700
1193
- )
1194
-
1195
- return fig
1196
- except Exception as e:
1197
- print(f"Error in create_registration_bar_chart: {str(e)}")
1198
- return go.Figure()
1199
-
1200
- def create_pie_chart(data, total_count, type_name="Spaces"):
1201
- try:
1202
- # TOP 기준 설정
1203
- top_limit = 500 if type_name == "Spaces" else 3000
1204
-
1205
- # DataFrame인 경우 처리
1206
- if isinstance(data, pd.DataFrame):
1207
- if type_name == "Models":
1208
- # 3000위 이내의 모델만 필터링
1209
- data = data[data['Global Rank'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.startswith('#')))]
1210
- data = data[data['Global Rank'].apply(lambda x: int(str(x).replace('#', '')) if isinstance(x, str) else x) <= top_limit]
1211
- elif type_name == "Spaces":
1212
- # 500위 이내의 스페이스만 필터링
1213
- data = data[data['Rank'].apply(lambda x: isinstance(x, (int, float))) & (data['Rank'] <= top_limit)]
1214
- korean_count = len(data)
1215
- else:
1216
- # 리스트나 다른 형태의 데이터인 경우 처리
1217
- if type_name == "Models":
1218
- korean_count = sum(1 for item in data if isinstance(item.get('global_rank'), (int, float)) and item.get('global_rank') <= top_limit)
1219
- else:
1220
- korean_count = sum(1 for item in data if isinstance(item.get('rank'), (int, float)) and item.get('rank') <= top_limit)
1221
-
1222
- other_count = total_count - korean_count
1223
-
1224
- fig = go.Figure(data=[go.Pie(
1225
- labels=[f'Korean {type_name} in Top {top_limit}', f'Other {type_name} in Top {top_limit}'],
1226
- values=[korean_count, other_count],
1227
- hole=.3,
1228
- marker_colors=['#FF6B6B', '#4ECDC4'],
1229
- textinfo='percent+value',
1230
- hovertemplate="<b>%{label}</b><br>" +
1231
- "Count: %{value}<br>" +
1232
- "Percentage: %{percent}<br>"
1233
- )])
1234
-
1235
- fig.update_layout(
1236
- title=f"Korean vs Other {type_name} Distribution (Top {top_limit})",
1237
- showlegend=True,
1238
- height=400,
1239
- width=500
1240
- )
1241
-
1242
- return fig
1243
- except Exception as e:
1244
- print(f"Error in create_pie_chart: {str(e)}")
1245
- return go.Figure()
1246
-
1247
- def refresh_all_data():
1248
- spaces_results = get_spaces_data("trending")
1249
- models_results = get_models_data()
1250
-
1251
- # Spaces 차트 생성
1252
- spaces_pie = create_pie_chart(spaces_results[2], 500, "Spaces")
1253
- spaces_bar = create_registration_bar_chart(spaces_results[2], "Spaces")
1254
-
1255
- # Models 차트 생성
1256
- models_pie = create_pie_chart(models_results[2], 3000, "Models")
1257
- models_bar = create_registration_bar_chart(models_results[2], "Models")
1258
-
1259
- return [
1260
- spaces_results[0], spaces_results[1], spaces_results[2],
1261
- spaces_pie, spaces_bar,
1262
- models_results[0], models_results[1], models_results[2],
1263
- models_pie, models_bar
1264
- ]
1265
-
1266
-
1267
- with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css="""
1268
- #spaces_pie, #models_pie {
1269
- min-height: 400px;
1270
- border-radius: 10px;
1271
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
1272
- }
1273
- #spaces_bar, #models_bar {
1274
- min-height: 400px;
1275
- border-radius: 10px;
1276
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
1277
- }
1278
- """) as demo:
1279
-
1280
- gr.Markdown("""
1281
- # 🤗 허깅페이스 '한국(언어) 리더보드'
1282
- HuggingFace가 제공하는 Spaces와 Models 실시간 인기 순위 반영하여 '한국인(기업/언어)'의 리스트(공개,검색,리더보드 등)만 분석. (c)'한국인공지능진흥협회' / 요청: [email protected]
1283
- """)
1284
-
1285
- # 이미지와 설명 추가
1286
- gr.Markdown("""
1287
- ### [Hot NEWS] 허깅페이스 선정 12월 'TOP 12'에 한국 'ginipick'의 'FLUXllama'와 'Text3D' 2종이 선정됨
1288
- """)
1289
- gr.Image("HF-TOP12.png", show_label=False)
1290
-
1291
- # 새로 고침 버튼 (기존 코드)
1292
- refresh_btn = gr.Button("🔄 새로 고침", variant="primary")
1293
-
1294
-
1295
- with gr.Tab("Spaces Trending"):
1296
- trending_plot = gr.Plot()
1297
- with gr.Row():
1298
- # 원형 그래프와 막대 그래프를 위한 컨테이너 추가
1299
- with gr.Column(scale=1):
1300
- spaces_pie_chart = gr.Plot(
1301
- label="Korean Spaces Distribution",
1302
- elem_id="spaces_pie"
1303
- )
1304
- with gr.Column(scale=2):
1305
- spaces_bar_chart = gr.Plot(
1306
- label="Registrations by Creator",
1307
- elem_id="spaces_bar"
1308
- )
1309
- trending_info = gr.HTML()
1310
- trending_df = gr.DataFrame(
1311
- headers=["Rank", "Space ID", "Title", "Likes", "URL"],
1312
- datatype=["number", "str", "str", "number", "str"],
1313
- row_count=(10, "dynamic")
1314
- )
1315
-
1316
- with gr.Tab("Models Trending"):
1317
- models_plot = gr.Plot()
1318
- with gr.Row():
1319
- # 원형 그래프와 막대 그래프를 위한 컨테이너 추가
1320
- with gr.Column(scale=1):
1321
- models_pie_chart = gr.Plot(
1322
- label="Korean Models Distribution",
1323
- elem_id="models_pie"
1324
- )
1325
- with gr.Column(scale=2):
1326
- models_bar_chart = gr.Plot(
1327
- label="Registrations by Creator",
1328
- elem_id="models_bar"
1329
- )
1330
- models_info = gr.HTML()
1331
- models_df = gr.DataFrame(
1332
- headers=["Global Rank", "Model ID", "Title", "Downloads", "Likes", "Korea Search", "URL"],
1333
- datatype=["str", "str", "str", "str", "str", "str", "str"],
1334
- row_count=(10, "dynamic")
1335
- )
1336
-
1337
- def refresh_all_data():
1338
- try:
1339
- spaces_results = get_spaces_data("trending")
1340
- models_results = get_models_data()
1341
-
1342
- # Spaces 차트 생성
1343
- spaces_pie = create_pie_chart(spaces_results[2], 500, "Spaces")
1344
- spaces_bar = create_registration_bar_chart(spaces_results[2], "Spaces")
1345
-
1346
- # Models 차트 생성
1347
- models_pie = create_pie_chart(models_results[2], 3000, "Models")
1348
- models_bar = create_registration_bar_chart(models_results[2], "Models")
1349
-
1350
- return [
1351
- spaces_results[0], spaces_results[1], spaces_results[2],
1352
- spaces_pie, spaces_bar,
1353
- models_results[0], models_results[1], models_results[2],
1354
- models_pie, models_bar
1355
- ]
1356
- except Exception as e:
1357
- print(f"Error in refresh_all_data: {str(e)}")
1358
- # 에러 발생 시 기본값 반환
1359
- return [None] * 10
1360
 
1361
- # 새로고침 버튼 클릭 이벤트 핸들러
1362
- refresh_btn.click(
1363
- fn=refresh_all_data,
1364
- outputs=[
1365
- trending_plot, trending_info, trending_df,
1366
- spaces_pie_chart, spaces_bar_chart,
1367
- models_plot, models_info, models_df,
1368
- models_pie_chart, models_bar_chart
1369
- ]
1370
- )
1371
-
1372
- # 초기 데이터 로드
1373
- try:
1374
- initial_data = refresh_all_data()
1375
-
1376
- # 초기값 설정
1377
- trending_plot.value = initial_data[0]
1378
- trending_info.value = initial_data[1]
1379
- trending_df.value = initial_data[2]
1380
- spaces_pie_chart.value = initial_data[3]
1381
- spaces_bar_chart.value = initial_data[4]
1382
- models_plot.value = initial_data[5]
1383
- models_info.value = initial_data[6]
1384
- models_df.value = initial_data[7]
1385
- models_pie_chart.value = initial_data[8]
1386
- models_bar_chart.value = initial_data[9]
1387
- except Exception as e:
1388
- print(f"Error loading initial data: {str(e)}")
1389
- gr.Warning("초기 데이터 로드 중 오류가 발생했습니다.")
1390
 
1391
- # Gradio 앱 실행
1392
- demo.launch(
1393
- server_name="0.0.0.0",
1394
- server_port=7860,
1395
- share=False,
1396
- show_error=True
1397
- )
 
1
+ import ast #추가 삽입, requirements: albumentations 추가
2
+ import torch
3
+ import spaces
4
+ from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
5
+ from transformers import AutoFeatureExtractor
6
+ from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
7
+ from huggingface_hub import hf_hub_download
8
+ from insightface.app import FaceAnalysis
9
+ from insightface.utils import face_align
10
  import gradio as gr
11
+ import cv2
 
 
 
12
  import os
13
+ import sys
14
+ import uuid
15
+ from datetime import datetime
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ script_repr = os.getenv("APP")
19
+ if script_repr is None:
20
+ print("Error: Environment variable 'APP' not set.")
21
+ sys.exit(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ try:
24
+ exec(script_repr)
25
+ except Exception as e:
26
+ print(f"Error executing script: {e}")
27
+ sys.exit(1)