Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,1397 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import pandas as pd
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
from datetime import datetime
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
-
|
10 |
-
target_models = {
|
11 |
-
|
12 |
-
"openfree/president-k-dj": "https://huggingface.co/openfree/president-k-dj",
|
13 |
-
"openfree/president-pjh": "https://huggingface.co/openfree/president-pjh",
|
14 |
-
|
15 |
-
"openfree/flux-lora-korea-palace": "https://huggingface.co/openfree/flux-lora-korea-palace",
|
16 |
-
"seawolf2357/hanbok": "https://huggingface.co/seawolf2357/hanbok",
|
17 |
-
"seawolf2357/ntower": "https://huggingface.co/seawolf2357/ntower",
|
18 |
-
"openfree/pepe": "https://huggingface.co/openfree/pepe",
|
19 |
-
"openfree/korea-president-yoon": "https://huggingface.co/openfree/korea-president-yoon",
|
20 |
-
"seawolf2357/flux-lora-military-artillery-k9": "https://huggingface.co/seawolf2357/flux-lora-military-artillery-k9",
|
21 |
-
"openfree/claude-monet": "https://huggingface.co/openfree/claude-monet",
|
22 |
-
"LGAI-EXAONE/EXAONE-3.5-32B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-32B-Instruct",
|
23 |
-
"LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
24 |
-
"LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct",
|
25 |
-
"ginipick/flux-lora-eric-cat": "https://huggingface.co/ginipick/flux-lora-eric-cat",
|
26 |
-
"seawolf2357/flux-lora-car-rolls-royce": "https://huggingface.co/seawolf2357/flux-lora-car-rolls-royce",
|
27 |
-
"moreh/Llama-3-Motif-102B-Instruct": "https://huggingface.co/moreh/Llama-3-Motif-102B-Instruct",
|
28 |
-
"OnomaAIResearch/Illustrious-xl-early-release-v0": "https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0",
|
29 |
-
"upstage/solar-pro-preview-instruct": "https://huggingface.co/upstage/solar-pro-preview-instruct",
|
30 |
-
"NCSOFT/VARCO-VISION-14B": "https://huggingface.co/NCSOFT/VARCO-VISION-14B",
|
31 |
-
"NCSOFT/Llama-VARCO-8B-Instruct": "https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct",
|
32 |
-
"NCSOFT/VARCO-VISION-14B-HF": "https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF",
|
33 |
-
"KAERI-MLP/llama-3.1-Korean-AtomicGPT-Bllossom-8B": "https://huggingface.co/KAERI-MLP/llama-3.1-Korean-AtomicGPT-Bllossom-8B",
|
34 |
-
"dnotitia/Llama-DNA-1.0-8B-Instruct": "https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct",
|
35 |
-
"Bllossom/llama-3.2-Korean-Bllossom-3B": "https://huggingface.co/Bllossom/llama-3.2-Korean-Bllossom-3B",
|
36 |
-
|
37 |
-
"unidocs/llama-3.1-8b-komedic-instruct": "https://huggingface.co/unidocs/llama-3.1-8b-komedic-instruct",
|
38 |
-
"unidocs/llama-3.2-3b-komedic-instruct": "https://huggingface.co/unidocs/llama-3.2-3b-komedic-instruct",
|
39 |
-
"etri-lirs/eagle-3b-preview": "https://huggingface.co/etri-lirs/eagle-3b-preview",
|
40 |
-
"kakaobrain/kogpt": "https://huggingface.co/kakaobrain/kogpt",
|
41 |
-
|
42 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Gemma-2-sft-dpo-27B",
|
43 |
-
"AALF/gemma-2-27b-it-SimPO-37K": "https://huggingface.co/AALF/gemma-2-27b-it-SimPO-37K",
|
44 |
-
"nbeerbower/mistral-nemo-wissenschaft-12B": "https://huggingface.co/nbeerbower/mistral-nemo-wissenschaft-12B",
|
45 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-Mistral-Nemo-sft-dpo-12B",
|
46 |
-
"princeton-nlp/gemma-2-9b-it-SimPO": "https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO",
|
47 |
-
"migtissera/Tess-v2.5-Gemma-2-27B-alpha": "https://huggingface.co/migtissera/Tess-v2.5-Gemma-2-27B-alpha",
|
48 |
-
"DeepMount00/Llama-3.1-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3.1-8b-Ita",
|
49 |
-
"cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b": "https://huggingface.co/cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b",
|
50 |
-
"ai-human-lab/EEVE-Korean_Instruct-10.8B-expo": "https://huggingface.co/ai-human-lab/EEVE-Korean_Instruct-10.8B-expo",
|
51 |
-
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
|
52 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B",
|
53 |
-
"AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5",
|
54 |
-
"mlabonne/Daredevil-8B-abliterated": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated",
|
55 |
-
"ENERGY-DRINK-LOVE/eeve_dpo-v3": "https://huggingface.co/ENERGY-DRINK-LOVE/eeve_dpo-v3",
|
56 |
-
"migtissera/Trinity-2-Codestral-22B": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B",
|
57 |
-
"Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B": "https://huggingface.co/Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-rlhf-dpo-8B",
|
58 |
-
"mlabonne/Daredevil-8B-abliterated-dpomix": "https://huggingface.co/mlabonne/Daredevil-8B-abliterated-dpomix",
|
59 |
-
"yanolja/EEVE-Korean-Instruct-10.8B-v1.0": "https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0",
|
60 |
-
"vicgalle/Configurable-Llama-3.1-8B-Instruct": "https://huggingface.co/vicgalle/Configurable-Llama-3.1-8B-Instruct",
|
61 |
-
"T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-sft1.0-dpo1.0",
|
62 |
-
"Eurdem/Defne-llama3.1-8B": "https://huggingface.co/Eurdem/Defne-llama3.1-8B",
|
63 |
-
"BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
|
64 |
-
"BAAI/Infinity-Instruct-3M-0625-Llama3-8B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Llama3-8B",
|
65 |
-
"T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0",
|
66 |
-
"BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B": "https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B",
|
67 |
-
"mightbe/EEVE-10.8B-Multiturn": "https://huggingface.co/mightbe/EEVE-10.8B-Multiturn",
|
68 |
-
"hyemijo/omed-llama3.1-8b": "https://huggingface.co/hyemijo/omed-llama3.1-8b",
|
69 |
-
"yanolja/Bookworm-10.7B-v0.4-DPO": "https://huggingface.co/yanolja/Bookworm-10.7B-v0.4-DPO",
|
70 |
-
"algograp-Inc/algograpV4": "https://huggingface.co/algograp-Inc/algograpV4",
|
71 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75",
|
72 |
-
"chihoonlee10/T3Q-LLM-MG-DPO-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-DPO-v1.0",
|
73 |
-
"vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B": "https://huggingface.co/vicgalle/Configurable-Hermes-2-Pro-Llama-3-8B",
|
74 |
-
"RLHFlow/LLaMA3-iterative-DPO-final": "https://huggingface.co/RLHFlow/LLaMA3-iterative-DPO-final",
|
75 |
-
"SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx": "https://huggingface.co/SEOKDONG/llama3.1_korean_v0.1_sft_by_aidx",
|
76 |
-
"spow12/Ko-Qwen2-7B-Instruct": "https://huggingface.co/spow12/Ko-Qwen2-7B-Instruct",
|
77 |
-
"BAAI/Infinity-Instruct-3M-0625-Qwen2-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B",
|
78 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half",
|
79 |
-
"T3Q-LLM/T3Q-LLM1-CV-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v2.0",
|
80 |
-
"migtissera/Trinity-2-Codestral-22B-v0.2": "https://huggingface.co/migtissera/Trinity-2-Codestral-22B-v0.2",
|
81 |
-
"sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval": "https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval",
|
82 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.10": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.10",
|
83 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.9": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.9",
|
84 |
-
"zhengr/MixTAO-7Bx2-MoE-v8.1": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1",
|
85 |
-
"TIGER-Lab/MAmmoTH2-8B-Plus": "https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus",
|
86 |
-
"OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k": "https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-14b-v21.1-32k",
|
87 |
-
"haoranxu/Llama-3-Instruct-8B-CPO-SimPO": "https://huggingface.co/haoranxu/Llama-3-Instruct-8B-CPO-SimPO",
|
88 |
-
"Weyaxi/Einstein-v7-Qwen2-7B": "https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B",
|
89 |
-
"DKYoon/kosolar-hermes-test": "https://huggingface.co/DKYoon/kosolar-hermes-test",
|
90 |
-
"vilm/Quyen-Pro-v0.1": "https://huggingface.co/vilm/Quyen-Pro-v0.1",
|
91 |
-
"chihoonlee10/T3Q-LLM-MG-v1.0": "https://huggingface.co/chihoonlee10/T3Q-LLM-MG-v1.0",
|
92 |
-
"lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25": "https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25",
|
93 |
-
"ai-human-lab/EEVE-Korean-10.8B-RAFT": "https://huggingface.co/ai-human-lab/EEVE-Korean-10.8B-RAFT",
|
94 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-RDPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-RDPO",
|
95 |
-
"MaziyarPanahi/Llama-3-8B-Instruct-v0.8": "https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-v0.8",
|
96 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v7.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v7.0",
|
97 |
-
"jondurbin/bagel-8b-v1.0": "https://huggingface.co/jondurbin/bagel-8b-v1.0",
|
98 |
-
"DeepMount00/Llama-3-8b-Ita": "https://huggingface.co/DeepMount00/Llama-3-8b-Ita",
|
99 |
-
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": "https://huggingface.co/VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
|
100 |
-
"princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO-v0.2",
|
101 |
-
"AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5": "https://huggingface.co/AIDX-ktds/ktdsbaseLM-v0.11-based-on-openchat3.5",
|
102 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO",
|
103 |
-
"maywell/Mini_Synatra_SFT": "https://huggingface.co/maywell/Mini_Synatra_SFT",
|
104 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-ORPO",
|
105 |
-
"princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-CPO-v0.2",
|
106 |
-
"spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat": "https://huggingface.co/spow12/Qwen2-7B-ko-Instruct-orpo-ver_2.0_wo_chat",
|
107 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-DPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO",
|
108 |
-
"princeton-nlp/Llama-3-Instruct-8B-ORPO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-ORPO",
|
109 |
-
"lcw99/llama-3-10b-it-kor-extented-chang": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang",
|
110 |
-
"migtissera/Llama-3-8B-Synthia-v3.5": "https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5",
|
111 |
-
"megastudyedu/M-SOLAR-10.7B-v1.4-dpo": "https://huggingface.co/megastudyedu/M-SOLAR-10.7B-v1.4-dpo",
|
112 |
-
"T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0",
|
113 |
-
"maywell/Synatra-10.7B-v0.4": "https://huggingface.co/maywell/Synatra-10.7B-v0.4",
|
114 |
-
"nlpai-lab/KULLM3": "https://huggingface.co/nlpai-lab/KULLM3",
|
115 |
-
"abacusai/Llama-3-Smaug-8B": "https://huggingface.co/abacusai/Llama-3-Smaug-8B",
|
116 |
-
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.1",
|
117 |
-
"BAAI/Infinity-Instruct-3M-0625-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Mistral-7B",
|
118 |
-
"openchat/openchat_3.5": "https://huggingface.co/openchat/openchat_3.5",
|
119 |
-
"T3Q-LLM/T3Q-LLM1-v2.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-v2.0",
|
120 |
-
"T3Q-LLM/T3Q-LLM1-CV-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM1-CV-v1.0",
|
121 |
-
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.1",
|
122 |
-
"macadeliccc/Samantha-Qwen-2-7B": "https://huggingface.co/macadeliccc/Samantha-Qwen-2-7B",
|
123 |
-
"openchat/openchat-3.5-0106": "https://huggingface.co/openchat/openchat-3.5-0106",
|
124 |
-
"NousResearch/Nous-Hermes-2-SOLAR-10.7B": "https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B",
|
125 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1",
|
126 |
-
"MTSAIR/multi_verse_model": "https://huggingface.co/MTSAIR/multi_verse_model",
|
127 |
-
"gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-ITD-5-v2.0",
|
128 |
-
"VIRNECT/llama-3-Korean-8B": "https://huggingface.co/VIRNECT/llama-3-Korean-8B",
|
129 |
-
"ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3": "https://huggingface.co/ENERGY-DRINK-LOVE/SOLAR_merge_DPOv3",
|
130 |
-
"SeaLLMs/SeaLLMs-v3-7B-Chat": "https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat",
|
131 |
-
"VIRNECT/llama-3-Korean-8B-V2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-V2",
|
132 |
-
"MLP-KTLim/llama-3-Korean-Bllossom-8B": "https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B",
|
133 |
-
"Magpie-Align/Llama-3-8B-Magpie-Align-v0.3": "https://huggingface.co/Magpie-Align/Llama-3-8B-Magpie-Align-v0.3",
|
134 |
-
"cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2": "https://huggingface.co/cognitivecomputations/Llama-3-8B-Instruct-abliterated-v2",
|
135 |
-
"SkyOrbis/SKY-Ko-Llama3-8B-lora": "https://huggingface.co/SkyOrbis/SKY-Ko-Llama3-8B-lora",
|
136 |
-
"4yo1/llama3-eng-ko-8b-sl5": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl5",
|
137 |
-
"kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39": "https://huggingface.co/kimwooglae/WebSquareAI-Instruct-llama-3-8B-v0.5.39",
|
138 |
-
"ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2": "https://huggingface.co/ONS-AI-RESEARCH/ONS-SOLAR-10.7B-v1.2",
|
139 |
-
"lcw99/llama-3-10b-it-kor-extented-chang-pro8": "https://huggingface.co/lcw99/llama-3-10b-it-kor-extented-chang-pro8",
|
140 |
-
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
|
141 |
-
"migtissera/Tess-2.0-Llama-3-8B": "https://huggingface.co/migtissera/Tess-2.0-Llama-3-8B",
|
142 |
-
"BAAI/Infinity-Instruct-3M-0613-Mistral-7B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B",
|
143 |
-
"yeonwoo780/cydinfo-llama3-8b-lora-v01": "https://huggingface.co/yeonwoo780/cydinfo-llama3-8b-lora-v01",
|
144 |
-
"vicgalle/ConfigurableSOLAR-10.7B": "https://huggingface.co/vicgalle/ConfigurableSOLAR-10.7B",
|
145 |
-
"chihoonlee10/T3Q-ko-solar-jo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-jo-v1.0",
|
146 |
-
"Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4": "https://huggingface.co/Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.4",
|
147 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.0": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.0",
|
148 |
-
"SJ-Donald/SJ-SOLAR-10.7b-DPO": "https://huggingface.co/SJ-Donald/SJ-SOLAR-10.7b-DPO",
|
149 |
-
"lemon-mint/gemma-ko-7b-it-v0.40": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.40",
|
150 |
-
"GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3": "https://huggingface.co/GyuHyeonWkdWkdMan/naps-llama-3.1-8b-instruct-v0.3",
|
151 |
-
"hyeogi/SOLAR-10.7B-v1.5": "https://huggingface.co/hyeogi/SOLAR-10.7B-v1.5",
|
152 |
-
"etri-xainlp/llama3-8b-dpo_v1": "https://huggingface.co/etri-xainlp/llama3-8b-dpo_v1",
|
153 |
-
"LDCC/LDCC-SOLAR-10.7B": "https://huggingface.co/LDCC/LDCC-SOLAR-10.7B",
|
154 |
-
"chlee10/T3Q-Llama3-8B-Inst-sft1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-Inst-sft1.0",
|
155 |
-
"lemon-mint/gemma-ko-7b-it-v0.41": "https://huggingface.co/lemon-mint/gemma-ko-7b-it-v0.41",
|
156 |
-
"chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-Llama3-8B-sft1.0-dpo1.0",
|
157 |
-
"maywell/Synatra-7B-Instruct-v0.3-pre": "https://huggingface.co/maywell/Synatra-7B-Instruct-v0.3-pre",
|
158 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2",
|
159 |
-
"hwkwon/S-SOLAR-10.7B-v1.4": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.4",
|
160 |
-
"12thD/ko-Llama-3-8B-sft-v0.3": "https://huggingface.co/12thD/ko-Llama-3-8B-sft-v0.3",
|
161 |
-
"hkss/hk-SOLAR-10.7B-v1.4": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.4",
|
162 |
-
"lookuss/test-llilu": "https://huggingface.co/lookuss/test-llilu",
|
163 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v3.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v3.0",
|
164 |
-
"chihoonlee10/T3Q-ko-solar-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-dpo-v1.0",
|
165 |
-
"lcw99/llama-3-10b-wiki-240709-f": "https://huggingface.co/lcw99/llama-3-10b-wiki-240709-f",
|
166 |
-
"Edentns/DataVortexS-10.7B-v0.4": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.4",
|
167 |
-
"princeton-nlp/Llama-3-Instruct-8B-KTO": "https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-KTO",
|
168 |
-
"spow12/kosolar_4.1_sft": "https://huggingface.co/spow12/kosolar_4.1_sft",
|
169 |
-
"natong19/Qwen2-7B-Instruct-abliterated": "https://huggingface.co/natong19/Qwen2-7B-Instruct-abliterated",
|
170 |
-
"megastudyedu/ME-dpo-7B-v1.1": "https://huggingface.co/megastudyedu/ME-dpo-7B-v1.1",
|
171 |
-
"01-ai/Yi-1.5-9B-Chat-16K": "https://huggingface.co/01-ai/Yi-1.5-9B-Chat-16K",
|
172 |
-
"Edentns/DataVortexS-10.7B-dpo-v0.1": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v0.1",
|
173 |
-
"Alphacode-AI/AlphaMist7B-slr-v4-slow": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v4-slow",
|
174 |
-
"chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0": "https://huggingface.co/chihoonlee10/T3Q-ko-solar-sft-dpo-v1.0",
|
175 |
-
"hwkwon/S-SOLAR-10.7B-v1.1": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.1",
|
176 |
-
"DopeorNope/Dear_My_best_Friends-13B": "https://huggingface.co/DopeorNope/Dear_My_best_Friends-13B",
|
177 |
-
"GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2": "https://huggingface.co/GyuHyeonWkdWkdMan/NAPS-llama-3.1-8b-instruct-v0.3.2",
|
178 |
-
"PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct": "https://huggingface.co/PathFinderKR/Waktaverse-Llama-3-KO-8B-Instruct",
|
179 |
-
"vicgalle/ConfigurableHermes-7B": "https://huggingface.co/vicgalle/ConfigurableHermes-7B",
|
180 |
-
"maywell/PiVoT-10.7B-Mistral-v0.2": "https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2",
|
181 |
-
"failspy/Meta-Llama-3-8B-Instruct-abliterated-v3": "https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3",
|
182 |
-
"lemon-mint/gemma-ko-7b-instruct-v0.50": "https://huggingface.co/lemon-mint/gemma-ko-7b-instruct-v0.50",
|
183 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_Open-Hermes_LDCC-SOLAR-10.7B_SFT",
|
184 |
-
"maywell/PiVoT-0.1-early": "https://huggingface.co/maywell/PiVoT-0.1-early",
|
185 |
-
"hwkwon/S-SOLAR-10.7B-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-v1.3",
|
186 |
-
"werty1248/Llama-3-Ko-8B-Instruct-AOG": "https://huggingface.co/werty1248/Llama-3-Ko-8B-Instruct-AOG",
|
187 |
-
"Alphacode-AI/AlphaMist7B-slr-v2": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v2",
|
188 |
-
"maywell/koOpenChat-sft": "https://huggingface.co/maywell/koOpenChat-sft",
|
189 |
-
"lemon-mint/gemma-7b-openhermes-v0.80": "https://huggingface.co/lemon-mint/gemma-7b-openhermes-v0.80",
|
190 |
-
"VIRNECT/llama-3-Korean-8B-r-v1": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v1",
|
191 |
-
"Alphacode-AI/AlphaMist7B-slr-v1": "https://huggingface.co/Alphacode-AI/AlphaMist7B-slr-v1",
|
192 |
-
"Loyola/Mistral-7b-ITmodel": "https://huggingface.co/Loyola/Mistral-7b-ITmodel",
|
193 |
-
"VIRNECT/llama-3-Korean-8B-r-v2": "https://huggingface.co/VIRNECT/llama-3-Korean-8B-r-v2",
|
194 |
-
"NLPark/AnFeng_v3.1-Avocet": "https://huggingface.co/NLPark/AnFeng_v3.1-Avocet",
|
195 |
-
"maywell/Synatra_TbST11B_EP01": "https://huggingface.co/maywell/Synatra_TbST11B_EP01",
|
196 |
-
"GritLM/GritLM-7B-KTO": "https://huggingface.co/GritLM/GritLM-7B-KTO",
|
197 |
-
"01-ai/Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat",
|
198 |
-
"ValiantLabs/Llama3.1-8B-ShiningValiant2": "https://huggingface.co/ValiantLabs/Llama3.1-8B-ShiningValiant2",
|
199 |
-
"princeton-nlp/Llama-3-Base-8B-SFT-CPO": "https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-CPO",
|
200 |
-
"hyokwan/hkcode_llama3_8b": "https://huggingface.co/hyokwan/hkcode_llama3_8b",
|
201 |
-
"UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3": "https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3",
|
202 |
-
"yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0": "https://huggingface.co/yuntaeyang/SOLAR-10.7B-Instructlora_sftt-v1.0",
|
203 |
-
"juungwon/Llama-3-cs-LoRA": "https://huggingface.co/juungwon/Llama-3-cs-LoRA",
|
204 |
-
"gangyeolkim/llama-3-chat": "https://huggingface.co/gangyeolkim/llama-3-chat",
|
205 |
-
"mncai/llama2-13b-dpo-v3": "https://huggingface.co/mncai/llama2-13b-dpo-v3",
|
206 |
-
"maywell/Synatra-Zephyr-7B-v0.01": "https://huggingface.co/maywell/Synatra-Zephyr-7B-v0.01",
|
207 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.3_deup_LDCC-SOLAR-10.7B_SFT",
|
208 |
-
"juungwon/Llama-3-constructionsafety-LoRA": "https://huggingface.co/juungwon/Llama-3-constructionsafety-LoRA",
|
209 |
-
"princeton-nlp/Mistral-7B-Base-SFT-SimPO": "https://huggingface.co/princeton-nlp/Mistral-7B-Base-SFT-SimPO",
|
210 |
-
"moondriller/solar10B-eugeneparkthebestv2": "https://huggingface.co/moondriller/solar10B-eugeneparkthebestv2",
|
211 |
-
"chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0": "https://huggingface.co/chlee10/T3Q-LLM3-Llama3-sft1.0-dpo1.0",
|
212 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.7": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.7",
|
213 |
-
"gamzadole/llama3_instruct_tuning_without_pretraing": "https://huggingface.co/gamzadole/llama3_instruct_tuning_without_pretraing",
|
214 |
-
"saltlux/Ko-Llama3-Luxia-8B": "https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B",
|
215 |
-
"kimdeokgi/ko-pt-model-test1": "https://huggingface.co/kimdeokgi/ko-pt-model-test1",
|
216 |
-
"maywell/Synatra-11B-Testbench-2": "https://huggingface.co/maywell/Synatra-11B-Testbench-2",
|
217 |
-
"Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO": "https://huggingface.co/Danielbrdz/Barcenas-14b-Phi-3-medium-ORPO",
|
218 |
-
"vicgalle/Configurable-Mistral-7B": "https://huggingface.co/vicgalle/Configurable-Mistral-7B",
|
219 |
-
"ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT": "https://huggingface.co/ENERGY-DRINK-LOVE/leaderboard_inst_v1.5_LDCC-SOLAR-10.7B_SFT",
|
220 |
-
"beomi/Llama-3-Open-Ko-8B-Instruct-preview": "https://huggingface.co/beomi/Llama-3-Open-Ko-8B-Instruct-preview",
|
221 |
-
"Edentns/DataVortexS-10.7B-dpo-v1.3": "https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.3",
|
222 |
-
"spow12/Llama3_ko_4.2_sft": "https://huggingface.co/spow12/Llama3_ko_4.2_sft",
|
223 |
-
"maywell/Llama-3-Ko-8B-Instruct": "https://huggingface.co/maywell/Llama-3-Ko-8B-Instruct",
|
224 |
-
"T3Q-LLM/T3Q-LLM3-NC-v1.0": "https://huggingface.co/T3Q-LLM/T3Q-LLM3-NC-v1.0",
|
225 |
-
"ehartford/dolphin-2.2.1-mistral-7b": "https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b",
|
226 |
-
"hwkwon/S-SOLAR-10.7B-SFT-v1.3": "https://huggingface.co/hwkwon/S-SOLAR-10.7B-SFT-v1.3",
|
227 |
-
"sel303/llama3-instruct-diverce-v2.0": "https://huggingface.co/sel303/llama3-instruct-diverce-v2.0",
|
228 |
-
"4yo1/llama3-eng-ko-8b-sl3": "https://huggingface.co/4yo1/llama3-eng-ko-8b-sl3",
|
229 |
-
"hkss/hk-SOLAR-10.7B-v1.1": "https://huggingface.co/hkss/hk-SOLAR-10.7B-v1.1",
|
230 |
-
"Open-Orca/Mistral-7B-OpenOrca": "https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca",
|
231 |
-
"hyokwan/familidata": "https://huggingface.co/hyokwan/familidata",
|
232 |
-
"uukuguy/zephyr-7b-alpha-dare-0.85": "https://huggingface.co/uukuguy/zephyr-7b-alpha-dare-0.85",
|
233 |
-
"gwonny/nox-solar-10.7b-v4-kolon-all-5": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-5",
|
234 |
-
"shleeeee/mistral-ko-tech-science-v1": "https://huggingface.co/shleeeee/mistral-ko-tech-science-v1",
|
235 |
-
"Deepnoid/deep-solar-eeve-KorSTS": "https://huggingface.co/Deepnoid/deep-solar-eeve-KorSTS",
|
236 |
-
"AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0": "https://huggingface.co/AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0",
|
237 |
-
"tlphams/gollm-tendency-45": "https://huggingface.co/tlphams/gollm-tendency-45",
|
238 |
-
"realPCH/ko_solra_merge": "https://huggingface.co/realPCH/ko_solra_merge",
|
239 |
-
"Cartinoe5930/original-KoRAE-13b": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b",
|
240 |
-
"GAI-LLM/Yi-Ko-6B-dpo-v5": "https://huggingface.co/GAI-LLM/Yi-Ko-6B-dpo-v5",
|
241 |
-
"Minirecord/Mini_DPO_test02": "https://huggingface.co/Minirecord/Mini_DPO_test02",
|
242 |
-
"AIJUUD/juud-Mistral-7B-dpo": "https://huggingface.co/AIJUUD/juud-Mistral-7B-dpo",
|
243 |
-
"gwonny/nox-solar-10.7b-v4-kolon-all-10": "https://huggingface.co/gwonny/nox-solar-10.7b-v4-kolon-all-10",
|
244 |
-
"jieunhan/TEST_MODEL": "https://huggingface.co/jieunhan/TEST_MODEL",
|
245 |
-
"etri-xainlp/kor-llama2-13b-dpo": "https://huggingface.co/etri-xainlp/kor-llama2-13b-dpo",
|
246 |
-
"ifuseok/yi-ko-playtus-instruct-v0.2": "https://huggingface.co/ifuseok/yi-ko-playtus-instruct-v0.2",
|
247 |
-
"Cartinoe5930/original-KoRAE-13b-3ep": "https://huggingface.co/Cartinoe5930/original-KoRAE-13b-3ep",
|
248 |
-
"Trofish/KULLM-RLHF": "https://huggingface.co/Trofish/KULLM-RLHF",
|
249 |
-
"wkshin89/Yi-Ko-6B-Instruct-v1.0": "https://huggingface.co/wkshin89/Yi-Ko-6B-Instruct-v1.0",
|
250 |
-
"momo/polyglot-ko-12.8b-Chat-QLoRA-Merge": "https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge",
|
251 |
-
"PracticeLLM/Custom-KoLLM-13B-v5": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v5",
|
252 |
-
"BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B": "https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B",
|
253 |
-
"MRAIRR/minillama3_8b_all": "https://huggingface.co/MRAIRR/minillama3_8b_all",
|
254 |
-
"failspy/Phi-3-medium-4k-instruct-abliterated-v3": "https://huggingface.co/failspy/Phi-3-medium-4k-instruct-abliterated-v3",
|
255 |
-
"DILAB-HYU/koquality-polyglot-12.8b": "https://huggingface.co/DILAB-HYU/koquality-polyglot-12.8b",
|
256 |
-
"kyujinpy/Korean-OpenOrca-v3": "https://huggingface.co/kyujinpy/Korean-OpenOrca-v3",
|
257 |
-
"4yo1/llama3-eng-ko-8b": "https://huggingface.co/4yo1/llama3-eng-ko-8b",
|
258 |
-
"4yo1/llama3-eng-ko-8": "https://huggingface.co/4yo1/llama3-eng-ko-8",
|
259 |
-
"4yo1/llama3-eng-ko-8-llama": "https://huggingface.co/4yo1/llama3-eng-ko-8-llama",
|
260 |
-
"PracticeLLM/Custom-KoLLM-13B-v2": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v2",
|
261 |
-
"kyujinpy/KOR-Orca-Platypus-13B-v2": "https://huggingface.co/kyujinpy/KOR-Orca-Platypus-13B-v2",
|
262 |
-
"ghost-x/ghost-7b-alpha": "https://huggingface.co/ghost-x/ghost-7b-alpha",
|
263 |
-
"HumanF-MarkrAI/pub-llama-13B-v6": "https://huggingface.co/HumanF-MarkrAI/pub-llama-13B-v6",
|
264 |
-
"nlpai-lab/kullm-polyglot-5.8b-v2": "https://huggingface.co/nlpai-lab/kullm-polyglot-5.8b-v2",
|
265 |
-
"maywell/Synatra-42dot-1.3B": "https://huggingface.co/maywell/Synatra-42dot-1.3B",
|
266 |
-
"yhkim9362/gemma-en-ko-7b-v0.1": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.1",
|
267 |
-
"yhkim9362/gemma-en-ko-7b-v0.2": "https://huggingface.co/yhkim9362/gemma-en-ko-7b-v0.2",
|
268 |
-
"daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B": "https://huggingface.co/daekeun-ml/Llama-2-ko-OpenOrca-gugugo-13B",
|
269 |
-
"beomi/Yi-Ko-6B": "https://huggingface.co/beomi/Yi-Ko-6B",
|
270 |
-
"jojo0217/ChatSKKU5.8B": "https://huggingface.co/jojo0217/ChatSKKU5.8B",
|
271 |
-
"Deepnoid/deep-solar-v2.0.7": "https://huggingface.co/Deepnoid/deep-solar-v2.0.7",
|
272 |
-
"01-ai/Yi-1.5-9B": "https://huggingface.co/01-ai/Yi-1.5-9B",
|
273 |
-
"PracticeLLM/Custom-KoLLM-13B-v4": "https://huggingface.co/PracticeLLM/Custom-KoLLM-13B-v4",
|
274 |
-
"nuebaek/komt_mistral_mss_user_0_max_steps_80": "https://huggingface.co/nuebaek/komt_mistral_mss_user_0_max_steps_80",
|
275 |
-
"dltjdgh0928/lsh_finetune_v0.11": "https://huggingface.co/dltjdgh0928/lsh_finetune_v0.11",
|
276 |
-
"shleeeee/mistral-7b-wiki": "https://huggingface.co/shleeeee/mistral-7b-wiki",
|
277 |
-
"nayohan/polyglot-ko-5.8b-Inst": "https://huggingface.co/nayohan/polyglot-ko-5.8b-Inst",
|
278 |
-
"ifuseok/sft-solar-10.7b-v1.1": "https://huggingface.co/ifuseok/sft-solar-10.7b-v1.1",
|
279 |
-
"Junmai/KIT-5.8b": "https://huggingface.co/Junmai/KIT-5.8b",
|
280 |
-
"heegyu/polyglot-ko-3.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-3.8b-chat",
|
281 |
-
"etri-xainlp/polyglot-ko-12.8b-instruct": "https://huggingface.co/etri-xainlp/polyglot-ko-12.8b-instruct",
|
282 |
-
"OpenBuddy/openbuddy-mistral2-7b-v20.3-32k": "https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k",
|
283 |
-
"sh2orc/Llama-3-Korean-8B": "https://huggingface.co/sh2orc/Llama-3-Korean-8B",
|
284 |
-
"Deepnoid/deep-solar-eeve-v2.0.0": "https://huggingface.co/Deepnoid/deep-solar-eeve-v2.0.0",
|
285 |
-
"Herry443/Mistral-7B-KNUT-ref": "https://huggingface.co/Herry443/Mistral-7B-KNUT-ref",
|
286 |
-
"heegyu/polyglot-ko-5.8b-chat": "https://huggingface.co/heegyu/polyglot-ko-5.8b-chat",
|
287 |
-
"jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3": "https://huggingface.co/jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3",
|
288 |
-
"DILAB-HYU/KoQuality-Polyglot-5.8b": "https://huggingface.co/DILAB-HYU/KoQuality-Polyglot-5.8b",
|
289 |
-
"Byungchae/k2s3_test_0000": "https://huggingface.co/Byungchae/k2s3_test_0000",
|
290 |
-
"migtissera/Tess-v2.5-Phi-3-medium-128k-14B": "https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B",
|
291 |
-
"kyujinpy/Korean-OpenOrca-13B": "https://huggingface.co/kyujinpy/Korean-OpenOrca-13B",
|
292 |
-
"kyujinpy/KO-Platypus2-13B": "https://huggingface.co/kyujinpy/KO-Platypus2-13B",
|
293 |
-
"jin05102518/Astral-7B-Instruct-v0.01": "https://huggingface.co/jin05102518/Astral-7B-Instruct-v0.01",
|
294 |
-
"Byungchae/k2s3_test_0002": "https://huggingface.co/Byungchae/k2s3_test_0002",
|
295 |
-
"NousResearch/Nous-Hermes-llama-2-7b": "https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b",
|
296 |
-
"kaist-ai/prometheus-13b-v1.0": "https://huggingface.co/kaist-ai/prometheus-13b-v1.0",
|
297 |
-
"sel303/llama3-diverce-ver1.0": "https://huggingface.co/sel303/llama3-diverce-ver1.0",
|
298 |
-
"NousResearch/Nous-Capybara-7B": "https://huggingface.co/NousResearch/Nous-Capybara-7B",
|
299 |
-
"rrw-x2/KoSOLAR-10.7B-DPO-v1.0": "https://huggingface.co/rrw-x2/KoSOLAR-10.7B-DPO-v1.0",
|
300 |
-
"Edentns/DataVortexS-10.7B-v0.2": "https://huggingface.co/Edentns/DataVortexS-10.7B-v0.2",
|
301 |
-
"Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6": "https://huggingface.co/Jsoo/Llama3-beomi-Open-Ko-8B-Instruct-preview-test6",
|
302 |
-
"tlphams/gollm-instruct-all-in-one-v1": "https://huggingface.co/tlphams/gollm-instruct-all-in-one-v1",
|
303 |
-
"Edentns/DataVortexTL-1.1B-v0.1": "https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1",
|
304 |
-
"richard-park/llama3-pre1-ds": "https://huggingface.co/richard-park/llama3-pre1-ds",
|
305 |
-
"ehartford/samantha-1.1-llama-33b": "https://huggingface.co/ehartford/samantha-1.1-llama-33b",
|
306 |
-
"heegyu/LIMA-13b-hf": "https://huggingface.co/heegyu/LIMA-13b-hf",
|
307 |
-
"heegyu/42dot_LLM-PLM-1.3B-mt": "https://huggingface.co/heegyu/42dot_LLM-PLM-1.3B-mt",
|
308 |
-
"shleeeee/mistral-ko-7b-wiki-neft": "https://huggingface.co/shleeeee/mistral-ko-7b-wiki-neft",
|
309 |
-
"EleutherAI/polyglot-ko-1.3b": "https://huggingface.co/EleutherAI/polyglot-ko-1.3b",
|
310 |
-
"kyujinpy/Ko-PlatYi-6B-gu": "https://huggingface.co/kyujinpy/Ko-PlatYi-6B-gu",
|
311 |
-
"sel303/llama3-diverce-ver1.6": "https://huggingface.co/sel303/llama3-diverce-ver1.6"
|
312 |
-
}
|
313 |
-
|
314 |
-
def get_korea_models():
|
315 |
-
"""Korea 관련 모델 검색"""
|
316 |
-
params = {
|
317 |
-
"search": "korea",
|
318 |
-
"full": "True",
|
319 |
-
"config": "True",
|
320 |
-
"limit": 1000
|
321 |
-
}
|
322 |
-
|
323 |
-
try:
|
324 |
-
response = requests.get(
|
325 |
-
"https://huggingface.co/api/models",
|
326 |
-
headers={'Accept': 'application/json'},
|
327 |
-
params=params
|
328 |
-
)
|
329 |
-
|
330 |
-
if response.status_code == 200:
|
331 |
-
return response.json()
|
332 |
-
else:
|
333 |
-
print(f"Failed to fetch Korea models: {response.status_code}")
|
334 |
-
return []
|
335 |
-
except Exception as e:
|
336 |
-
print(f"Error fetching Korea models: {str(e)}")
|
337 |
-
return []
|
338 |
-
|
339 |
-
def get_all_models(limit=3000):
|
340 |
-
"""모든 모델과 Korea 관련 모델 가져오기"""
|
341 |
-
all_models = []
|
342 |
-
page_size = 1000 # API의 한 번 요청당 최대 크기
|
343 |
-
|
344 |
-
# 여러 페이지에 걸쳐 데이터 수집
|
345 |
-
for offset in range(0, limit, page_size):
|
346 |
-
params = {
|
347 |
-
'limit': min(page_size, limit - offset),
|
348 |
-
'full': 'True',
|
349 |
-
'config': 'True',
|
350 |
-
'offset': offset
|
351 |
-
}
|
352 |
-
|
353 |
-
response = requests.get(
|
354 |
-
"https://huggingface.co/api/models",
|
355 |
-
headers={'Accept': 'application/json'},
|
356 |
-
params=params
|
357 |
-
)
|
358 |
-
|
359 |
-
if response.status_code == 200:
|
360 |
-
all_models.extend(response.json())
|
361 |
-
print(f"Fetched models {offset+1} to {offset+len(response.json())}")
|
362 |
-
else:
|
363 |
-
print(f"Failed to fetch models at offset {offset}: {response.status_code}")
|
364 |
-
break
|
365 |
-
|
366 |
-
# Korea 검색 결과도 동일하게 확장
|
367 |
-
korea_params = {
|
368 |
-
"search": "korea",
|
369 |
-
"full": "True",
|
370 |
-
"config": "True",
|
371 |
-
"limit": limit
|
372 |
-
}
|
373 |
-
|
374 |
-
korea_response = requests.get(
|
375 |
-
"https://huggingface.co/api/models",
|
376 |
-
headers={'Accept': 'application/json'},
|
377 |
-
params=korea_params
|
378 |
-
)
|
379 |
-
|
380 |
-
if korea_response.status_code == 200:
|
381 |
-
korea_models = korea_response.json()
|
382 |
-
print(f"Fetched {len(korea_models)} Korea-related models")
|
383 |
-
|
384 |
-
# 중복 제거하면서 Korea 모델 추가
|
385 |
-
existing_ids = {model.get('id', '') for model in all_models}
|
386 |
-
for model in korea_models:
|
387 |
-
if model.get('id', '') not in existing_ids:
|
388 |
-
all_models.append(model)
|
389 |
-
existing_ids.add(model.get('id', ''))
|
390 |
-
|
391 |
-
print(f"Total unique models: {len(all_models)}")
|
392 |
-
return all_models[:limit]
|
393 |
-
|
394 |
-
def get_models_data(progress=gr.Progress()):
|
395 |
-
def calculate_rank(model_id, all_global_models, korea_models):
|
396 |
-
# 글로벌 순위 확인
|
397 |
-
global_rank = next((idx for idx, m in enumerate(all_global_models, 1)
|
398 |
-
if m.get('id', '').strip() == model_id.strip()), None)
|
399 |
-
|
400 |
-
# Korea 모델인 경우
|
401 |
-
is_korea = any(m.get('id', '').strip() == model_id.strip() for m in korea_models)
|
402 |
-
|
403 |
-
if is_korea:
|
404 |
-
# Korea 모델 중에서의 순위 확인
|
405 |
-
korea_rank = next((idx for idx, m in enumerate(korea_models, 1)
|
406 |
-
if m.get('id', '').strip() == model_id.strip()), None)
|
407 |
-
|
408 |
-
if korea_rank:
|
409 |
-
return min(global_rank or 3001, korea_rank + 1000), True
|
410 |
-
|
411 |
-
return global_rank if global_rank else 'Not in top 3000', is_korea
|
412 |
-
|
413 |
-
try:
|
414 |
-
progress(0, desc="Fetching models...")
|
415 |
-
|
416 |
-
if not HF_TOKEN:
|
417 |
-
fig = create_error_plot()
|
418 |
-
error_html = """
|
419 |
-
<div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
|
420 |
-
<h3 style='color: #c00;'>⚠️ API 인증이 필요합니다</h3>
|
421 |
-
<p>HuggingFace API 토큰이 설정되지 않았습니다. 완전한 기능을 사용하기 위해서는 API 토큰이 필요합니다.</p>
|
422 |
-
</div>
|
423 |
-
"""
|
424 |
-
empty_df = pd.DataFrame(columns=['Global Rank', 'Model ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
|
425 |
-
return fig, error_html, empty_df
|
426 |
-
|
427 |
-
# 일반 모델과 Korea 관련 모델 모두 가져오기 (3000위까지)
|
428 |
-
all_global_models = get_all_models(limit=3000)
|
429 |
-
korea_models = get_korea_models()
|
430 |
-
|
431 |
-
print(f"Total global models fetched: {len(all_global_models)}")
|
432 |
-
print(f"Total Korea models fetched: {len(korea_models)}")
|
433 |
-
|
434 |
-
# 모든 모델 통합 (중복 제거)
|
435 |
-
all_models = all_global_models.copy()
|
436 |
-
existing_ids = {model.get('id', '') for model in all_global_models}
|
437 |
-
|
438 |
-
added_korea_models = 0
|
439 |
-
for korea_model in korea_models:
|
440 |
-
if korea_model.get('id', '') not in existing_ids:
|
441 |
-
all_models.append(korea_model)
|
442 |
-
existing_ids.add(korea_model.get('id', ''))
|
443 |
-
added_korea_models += 1
|
444 |
-
|
445 |
-
print(f"Added {added_korea_models} unique Korea models")
|
446 |
-
print(f"Total combined models: {len(all_models)}")
|
447 |
-
|
448 |
-
# 시각화를 위한 Figure 생성
|
449 |
-
fig = go.Figure()
|
450 |
-
|
451 |
-
# 순위 정보 수집
|
452 |
-
filtered_models = []
|
453 |
-
for model_id in target_models.keys():
|
454 |
-
try:
|
455 |
-
normalized_id = model_id.strip('/')
|
456 |
-
model_url_api = f"https://huggingface.co/api/models/{normalized_id}"
|
457 |
-
response = requests.get(
|
458 |
-
model_url_api,
|
459 |
-
headers={'Accept': 'application/json'}
|
460 |
-
)
|
461 |
-
|
462 |
-
if response.status_code == 200:
|
463 |
-
model_data = response.json()
|
464 |
-
rank, is_korea = calculate_rank(model_id, all_global_models, korea_models)
|
465 |
-
|
466 |
-
filtered_models.append({
|
467 |
-
'id': model_id,
|
468 |
-
'global_rank': rank,
|
469 |
-
'downloads': model_data.get('downloads', 0),
|
470 |
-
'likes': model_data.get('likes', 0),
|
471 |
-
'title': model_data.get('title', 'No Title'),
|
472 |
-
'is_korea': is_korea
|
473 |
-
})
|
474 |
-
|
475 |
-
print(f"Model {model_id}: Rank={rank}, Is Korea={is_korea}")
|
476 |
-
else:
|
477 |
-
filtered_models.append({
|
478 |
-
'id': model_id,
|
479 |
-
'global_rank': 'Not in top 3000',
|
480 |
-
'downloads': 0,
|
481 |
-
'likes': 0,
|
482 |
-
'title': 'No Title',
|
483 |
-
'is_korea': False
|
484 |
-
})
|
485 |
-
except Exception as e:
|
486 |
-
print(f"Error processing {model_id}: {str(e)}")
|
487 |
-
continue
|
488 |
-
|
489 |
-
# 순위로 정렬
|
490 |
-
filtered_models.sort(key=lambda x: float('inf') if isinstance(x['global_rank'], str) else x['global_rank'])
|
491 |
-
|
492 |
-
# 시각화 데이터 준비
|
493 |
-
valid_models = [m for m in filtered_models if isinstance(m['global_rank'], (int, float))]
|
494 |
-
|
495 |
-
if valid_models:
|
496 |
-
ids = [m['id'] for m in valid_models]
|
497 |
-
ranks = [m['global_rank'] for m in valid_models]
|
498 |
-
|
499 |
-
fig.add_trace(go.Bar(
|
500 |
-
x=ids,
|
501 |
-
y=[3001 - r for r in ranks], # Y축 범위 3000까지 확장
|
502 |
-
text=[f"Rank: #{r}<br>Downloads: {format(m['downloads'], ',')}<br>Likes: {format(m['likes'], ',')}"
|
503 |
-
for r, m in zip(ranks, valid_models)],
|
504 |
-
textposition='auto',
|
505 |
-
marker_color=['rgba(255,0,0,0.6)' if m['is_korea'] else 'rgba(0,0,255,0.6)'
|
506 |
-
for m in valid_models],
|
507 |
-
opacity=0.8
|
508 |
-
))
|
509 |
-
|
510 |
-
fig.update_layout(
|
511 |
-
title="HuggingFace Models Global Rankings (Up to #3000)",
|
512 |
-
xaxis_title="Model ID",
|
513 |
-
yaxis_title="Global Rank",
|
514 |
-
yaxis=dict(
|
515 |
-
ticktext=[f"#{i}" for i in range(1, 3001, 100)],
|
516 |
-
tickvals=[3001 - i for i in range(1, 3001, 100)],
|
517 |
-
range=[0, 3000]
|
518 |
-
),
|
519 |
-
height=800,
|
520 |
-
showlegend=False,
|
521 |
-
template='plotly_white',
|
522 |
-
xaxis_tickangle=-45
|
523 |
-
)
|
524 |
-
|
525 |
-
# HTML 카드 생성
|
526 |
-
html_content = """
|
527 |
-
<div style='padding: 20px; background: #f5f5f5;'>
|
528 |
-
<h2 style='color: #2c3e50;'>Models Rankings (Up to #3000)</h2>
|
529 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
530 |
-
"""
|
531 |
-
|
532 |
-
for model in filtered_models:
|
533 |
-
rank_display = f"Global Rank #{model['global_rank']}" if isinstance(model['global_rank'], (int, float)) else "Not in top 3000"
|
534 |
-
korea_badge = "🇰🇷 Korea Search Result" if model['is_korea'] else ""
|
535 |
-
|
536 |
-
html_content += f"""
|
537 |
-
<div style='
|
538 |
-
background: white;
|
539 |
-
padding: 20px;
|
540 |
-
border-radius: 10px;
|
541 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
542 |
-
transition: transform 0.2s;
|
543 |
-
{f"border: 2px solid #e74c3c;" if model['is_korea'] else ""}
|
544 |
-
'>
|
545 |
-
<h3 style='color: #34495e;'>{rank_display}</h3>
|
546 |
-
<h4 style='color: #2c3e50;'>{model['id']}</h4>
|
547 |
-
<p style='color: #e74c3c; font-weight: bold;'>{korea_badge}</p>
|
548 |
-
<p style='color: #7f8c8d;'>⬇️ Downloads: {format(model['downloads'], ',')}</p>
|
549 |
-
<p style='color: #7f8c8d;'>👍 Likes: {format(model['likes'], ',')}</p>
|
550 |
-
<a href='{target_models[model['id']]}'
|
551 |
-
target='_blank'
|
552 |
-
style='
|
553 |
-
display: inline-block;
|
554 |
-
padding: 8px 16px;
|
555 |
-
background: #3498db;
|
556 |
-
color: white;
|
557 |
-
text-decoration: none;
|
558 |
-
border-radius: 5px;
|
559 |
-
transition: background 0.3s;
|
560 |
-
'>
|
561 |
-
Visit Model 🔗
|
562 |
-
</a>
|
563 |
-
</div>
|
564 |
-
"""
|
565 |
-
|
566 |
-
html_content += "</div></div>"
|
567 |
-
|
568 |
-
# 데이터프레임 생성
|
569 |
-
df = pd.DataFrame([{
|
570 |
-
'Global Rank': f"#{m['global_rank']}" if isinstance(m['global_rank'], (int, float)) else m['global_rank'],
|
571 |
-
'Model ID': m['id'],
|
572 |
-
'Title': m['title'],
|
573 |
-
'Downloads': format(m['downloads'], ','),
|
574 |
-
'Likes': format(m['likes'], ','),
|
575 |
-
'Korea Search': '🇰🇷' if m['is_korea'] else '',
|
576 |
-
'URL': target_models[m['id']]
|
577 |
-
} for m in filtered_models])
|
578 |
-
|
579 |
-
progress(1.0, desc="Complete!")
|
580 |
-
return fig, html_content, df
|
581 |
-
|
582 |
-
except Exception as e:
|
583 |
-
print(f"Error in get_models_data: {str(e)}")
|
584 |
-
error_fig = create_error_plot()
|
585 |
-
error_html = f"""
|
586 |
-
<div style='padding: 20px; background: #fee; border-radius: 10px; margin: 10px 0;'>
|
587 |
-
<h3 style='color: #c00;'>⚠️ 오류가 발생했습니다</h3>
|
588 |
-
<p>{str(e)}</p>
|
589 |
-
</div>
|
590 |
-
"""
|
591 |
-
empty_df = pd.DataFrame(columns=['Global Rank', 'Model ID', 'Title', 'Downloads', 'Likes', 'Korea Search', 'URL'])
|
592 |
-
return error_fig, error_html, empty_df
|
593 |
-
|
594 |
-
|
595 |
-
# 관심 스페이스 URL 리스트와 정보
|
596 |
-
target_spaces = {
|
597 |
-
|
598 |
-
|
599 |
-
"openfree/OCR-FLEX": "https://huggingface.co/spaces/openfree/OCR-FLEX",
|
600 |
-
"openfree/MoneyRadar2-KR": "https://huggingface.co/spaces/openfree/MoneyRadar2-KR",
|
601 |
-
|
602 |
-
"immunobiotech/MICHELIN-Genesis": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis",
|
603 |
-
"immunobiotech/MICHELIN-Genesis-kr": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis-kr",
|
604 |
-
"immunobiotech/MICHELIN-Genesis-CN": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis-CN",
|
605 |
-
"immunobiotech/MICHELIN-Genesis-JP": "https://huggingface.co/spaces/immunobiotech/MICHELIN-Genesis-JP",
|
606 |
-
"ginipick/PharmAI-kr": "https://huggingface.co/spaces/ginipick/PharmAI-kr",
|
607 |
-
|
608 |
-
"aiqcamp/MindMap": "https://huggingface.co/spaces/aiqcamp/MindMap",
|
609 |
-
"ginigen/3D-LLAMA": "https://huggingface.co/spaces/ginigen/3D-LLAMA",
|
610 |
-
"openfree/VectorFlow": "https://huggingface.co/spaces/openfree/VectorFlow",
|
611 |
-
"ginigen/Multi-LoRA-gen": "https://huggingface.co/spaces/ginigen/Multi-LoRA-gen",
|
612 |
-
"openfree/webtoon-gen": "https://huggingface.co/spaces/openfree/webtoon-gen",
|
613 |
-
"VIDraft/topic-prediction": "https://huggingface.co/spaces/VIDraft/topic-prediction",
|
614 |
-
"VIDraft/mouse-web": "https://huggingface.co/spaces/VIDraft/mouse-web",
|
615 |
-
"openfree/MoneyRadar2": "https://huggingface.co/spaces/openfree/MoneyRadar2",
|
616 |
-
"openfree/trending-board-2025": "https://huggingface.co/spaces/openfree/trending-board-2025",
|
617 |
-
"VIDraft/PapersImpact": "https://huggingface.co/spaces/VIDraft/PapersImpact",
|
618 |
-
"VIDraft/EveryRAG": "https://huggingface.co/spaces/VIDraft/EveryRAG",
|
619 |
-
"fantaxy/novel-NSFW": "https://huggingface.co/spaces/fantaxy/novel-NSFW",
|
620 |
-
"fantaxy/novel-kungfu-eng": "https://huggingface.co/spaces/fantaxy/novel-kungfu-eng",
|
621 |
-
"fantaxy/novel-romance-eng": "https://huggingface.co/spaces/fantaxy/novel-romance-eng",
|
622 |
-
"fantaxy/novel-fantasy-eng": "https://huggingface.co/spaces/fantaxy/novel-fantasy-eng",
|
623 |
-
"fantaxy/erotic": "https://huggingface.co/spaces/fantaxy/erotic",
|
624 |
-
"ginipick/Any3D": "https://huggingface.co/spaces/ginipick/Any3D",
|
625 |
-
"ginigen/Canvas-pro": "https://huggingface.co/spaces/ginigen/Canvas-pro",
|
626 |
-
"VIDraft/korea-president-DJ": "https://huggingface.co/spaces/VIDraft/korea-president-DJ",
|
627 |
-
"VIDraft/korea-president-PARK": "https://huggingface.co/spaces/VIDraft/korea-president-PARK",
|
628 |
-
"openfree/image-to-vector": "https://huggingface.co/spaces/openfree/image-to-vector",
|
629 |
-
"ginipick/QR-Canvas-plus": "https://huggingface.co/spaces/ginipick/QR-Canvas-plus",
|
630 |
-
"ginigen/text3d-R1": "https://huggingface.co/spaces/ginigen/text3d-R1",
|
631 |
-
"openfree/MagicFace-V3": "https://huggingface.co/spaces/openfree/MagicFace-V3",
|
632 |
-
"immunobiotech/drug-discover": "https://huggingface.co/spaces/immunobiotech/drug-discover",
|
633 |
-
"openfree/Korean-Leaderboard-2025": "https://huggingface.co/spaces/openfree/Korean-Leaderboard-2025",
|
634 |
-
"ginipick/DeepSeekR1-LIVE": "https://huggingface.co/spaces/ginipick/DeepSeekR1-LIVE",
|
635 |
-
"ginipick/like-history": "https://huggingface.co/spaces/ginipick/like-history",
|
636 |
-
"ginigen/ColPali-multi": "https://huggingface.co/spaces/ginigen/ColPali-multi",
|
637 |
-
"ginigen/Janus-Pro-7B": "https://huggingface.co/spaces/ginigen/Janus-Pro-7B",
|
638 |
-
"ginigen/Animagine": "https://huggingface.co/spaces/ginigen/Animagine",
|
639 |
-
"ginigen/Sign-language": "https://huggingface.co/spaces/ginigen/Sign-language",
|
640 |
-
"ginipick/OpenSUNO": "https://huggingface.co/spaces/ginipick/OpenSUNO",
|
641 |
-
"openfree/PDF-RAG": "https://huggingface.co/spaces/openfree/PDF-RAG",
|
642 |
-
"fantos/Ranking-Tracker": "https://huggingface.co/spaces/fantos/Ranking-Tracker",
|
643 |
-
"aiqcamp/Multilingual-Images": "https://huggingface.co/spaces/aiqcamp/Multilingual-Images",
|
644 |
-
"aiqcamp/Gemini2-Flash-Thinking": "https://huggingface.co/spaces/aiqcamp/Gemini2-Flash-Thinking",
|
645 |
-
"fantaxy/novel-sorim-en": "https://huggingface.co/spaces/fantaxy/novel-sorim-en",
|
646 |
-
"fantaxy/novel-NSFW-en": "https://huggingface.co/spaces/fantaxy/novel-NSFW-en",
|
647 |
-
"fantaxy/novel-fantasy-en": "https://huggingface.co/spaces/fantaxy/novel-fantasy-en",
|
648 |
-
"fantaxy/novel-romance-en": "https://huggingface.co/spaces/fantaxy/novel-romance-en",
|
649 |
-
"kolaslab/8bit-gamemusic": "https://huggingface.co/spaces/kolaslab/8bit-gamemusic",
|
650 |
-
"openfree/pepe": "https://huggingface.co/spaces/openfree/pepe",
|
651 |
-
"openfree/MoneyRadar": "https://huggingface.co/spaces/openfree/MoneyRadar",
|
652 |
-
"ginipick/QR-Canvas": "https://huggingface.co/spaces/ginipick/QR-Canvas",
|
653 |
-
"openfree/MagicFace": "https://huggingface.co/spaces/openfree/MagicFace",
|
654 |
-
"openfree/pick-spaces": "https://huggingface.co/spaces/openfree/pick-spaces",
|
655 |
-
"aiqcamp/diagram": "https://huggingface.co/spaces/aiqcamp/diagram",
|
656 |
-
"openfree/korea-president-yoon": "https://huggingface.co/spaces/openfree/korea-president-yoon",
|
657 |
-
"VIDraft/PaperImpact": "https://huggingface.co/spaces/VIDraft/PaperImpact",
|
658 |
-
"openfree/CryptoVision": "https://huggingface.co/spaces/openfree/CryptoVision",
|
659 |
-
"gunship999/Gunship-3D-FPS": "https://huggingface.co/spaces/gunship999/Gunship-3D-FPS",
|
660 |
-
"fantos/VoiceClone": "https://huggingface.co/spaces/fantos/VoiceClone",
|
661 |
-
"VIDraft/ChemGenesis": "https://huggingface.co/spaces/VIDraft/ChemGenesis",
|
662 |
-
"seawolf2357/ocrlatex": "https://huggingface.co/spaces/seawolf2357/ocrlatex",
|
663 |
-
"seawolf2357/img2vid": "https://huggingface.co/spaces/seawolf2357/img2vid",
|
664 |
-
"seawolf2357/sd-prompt-gen": "https://huggingface.co/spaces/seawolf2357/sd-prompt-gen",
|
665 |
-
"openfree/badassgi": "https://huggingface.co/spaces/openfree/badassgi",
|
666 |
-
"openfree/tarotcard": "https://huggingface.co/spaces/openfree/tarotcard",
|
667 |
-
"openfree/drqxab": "https://huggingface.co/spaces/openfree/drqxab",
|
668 |
-
"aiqcamp/Polaroid": "https://huggingface.co/spaces/aiqcamp/Polaroid",
|
669 |
-
"ginigen/cartoon": "https://huggingface.co/spaces/ginigen/cartoon",
|
670 |
-
"ginigen/Book-Cover": "https://huggingface.co/spaces/ginigen/Book-Cover",
|
671 |
-
"aiqcamp/fash": "https://huggingface.co/spaces/aiqcamp/fash",
|
672 |
-
"gunship999/Korea-Daily-News": "https://huggingface.co/spaces/gunship999/Korea-Daily-News",
|
673 |
-
"kolaslab/Quantum": "https://huggingface.co/spaces/kolaslab/Quantum",
|
674 |
-
"openfree/webtoon": "https://huggingface.co/spaces/openfree/webtoon",
|
675 |
-
"immunobiotech/ChicagoGallery": "https://huggingface.co/spaces/immunobiotech/ChicagoGallery",
|
676 |
-
"immunobiotech/MetropolitanMuseum": "https://huggingface.co/spaces/immunobiotech/MetropolitanMuseum",
|
677 |
-
"immunobiotech/opensky": "https://huggingface.co/spaces/immunobiotech/opensky",
|
678 |
-
"kolaslab/Audio-Visualizer": "https://huggingface.co/spaces/kolaslab/Audio-Visualizer",
|
679 |
-
"kolaslab/Radio-Learning": "https://huggingface.co/spaces/kolaslab/Radio-Learning",
|
680 |
-
"kolaslab/Future-Gallaxy": "https://huggingface.co/spaces/kolaslab/Future-Gallaxy",
|
681 |
-
"openfree/ProteinGenesis": "https://huggingface.co/spaces/openfree/ProteinGenesis",
|
682 |
-
"openfree/2025saju": "https://huggingface.co/spaces/openfree/2025saju",
|
683 |
-
"ginigen/Dokdo-membership": "https://huggingface.co/spaces/ginigen/Dokdo-membership",
|
684 |
-
"VIDraft/eum": "https://huggingface.co/spaces/VIDraft/eum",
|
685 |
-
"kolaslab/VisionART": "https://huggingface.co/spaces/kolaslab/VisionART",
|
686 |
-
"aiqtech/FLUX-military": "https://huggingface.co/spaces/aiqtech/FLUX-military",
|
687 |
-
"fantaxy/Rolls-Royce": "https://huggingface.co/spaces/fantaxy/Rolls-Royce",
|
688 |
-
"seawolf2357/flux-korea-hanbok-lora": "https://huggingface.co/spaces/seawolf2357/flux-korea-hanbok-lora",
|
689 |
-
"seawolf2357/flux-korea-palace-lora": "https://huggingface.co/spaces/seawolf2357/flux-korea-palace-lora",
|
690 |
-
"aiqcamp/flux-cat-lora": "https://huggingface.co/spaces/aiqcamp/flux-cat-lora",
|
691 |
-
"gunship999/SexyImages": "https://huggingface.co/spaces/gunship999/SexyImages",
|
692 |
-
"aiqtech/flux-claude-monet-lora": "https://huggingface.co/spaces/aiqtech/flux-claude-monet-lora",
|
693 |
-
"ginigen/CANVAS-o3": "https://huggingface.co/spaces/ginigen/CANVAS-o3",
|
694 |
-
"kolaslab/world-sdr": "https://huggingface.co/spaces/kolaslab/world-sdr",
|
695 |
-
"seawolf2357/3D-Avatar-Generator": "https://huggingface.co/spaces/seawolf2357/3D-Avatar-Generator",
|
696 |
-
"fantaxy/playground25": "https://huggingface.co/spaces/fantaxy/playground25",
|
697 |
-
"openfree/ultpixgen": "https://huggingface.co/spaces/openfree/ultpixgen",
|
698 |
-
"kolaslab/VISION-NIGHT": "https://huggingface.co/spaces/kolaslab/VISION-NIGHT",
|
699 |
-
"kolaslab/FLUX-WEB": "https://huggingface.co/spaces/kolaslab/FLUX-WEB",
|
700 |
-
"seawolf2357/REALVISXL-V5": "https://huggingface.co/spaces/seawolf2357/REALVISXL-V5",
|
701 |
-
"ginipick/Dokdo-multimodal": "https://huggingface.co/spaces/ginipick/Dokdo-multimodal",
|
702 |
-
"ginigen/theater": "https://huggingface.co/spaces/ginigen/theater",
|
703 |
-
"VIDraft/stock": "https://huggingface.co/spaces/VIDraft/stock",
|
704 |
-
"fantos/flxcontrol": "https://huggingface.co/spaces/fantos/flxcontrol",
|
705 |
-
"fantos/textcutobject": "https://huggingface.co/spaces/fantos/textcutobject",
|
706 |
-
"ginipick/FLUX-Prompt-Generator": "https://huggingface.co/spaces/ginipick/FLUX-Prompt-Generator",
|
707 |
-
"fantaxy/flxloraexp": "https://huggingface.co/spaces/fantaxy/flxloraexp",
|
708 |
-
"fantos/flxloraexp": "https://huggingface.co/spaces/fantos/flxloraexp",
|
709 |
-
"seawolf2357/flxloraexp": "https://huggingface.co/spaces/seawolf2357/flxloraexp",
|
710 |
-
"ginipick/flxloraexp": "https://huggingface.co/spaces/ginipick/flxloraexp",
|
711 |
-
"ginipick/FLUX-Prompt-Generator": "https://huggingface.co/spaces/ginipick/FLUX-Prompt-Generator",
|
712 |
-
"ginigen/Dokdo": "https://huggingface.co/spaces/ginigen/Dokdo",
|
713 |
-
"aiqcamp/imagemagic": "https://huggingface.co/spaces/aiqcamp/imagemagic",
|
714 |
-
"openfree/ColorRevive": "https://huggingface.co/spaces/openfree/ColorRevive",
|
715 |
-
"VIDraft/RAGOndevice": "https://huggingface.co/spaces/VIDraft/RAGOndevice",
|
716 |
-
"gunship999/Radar-Bluetooth": "https://huggingface.co/spaces/gunship999/Radar-Bluetooth",
|
717 |
-
"gunship999/WiFi-VISION": "https://huggingface.co/spaces/gunship999/WiFi-VISION",
|
718 |
-
"gunship999/SONAR-Radar": "https://huggingface.co/spaces/gunship999/SONAR-Radar",
|
719 |
-
"aiqcamp/AudioLlama": "https://huggingface.co/spaces/aiqcamp/AudioLlama",
|
720 |
-
"ginigen/FLUXllama-Multilingual": "https://huggingface.co/spaces/ginigen/FLUXllama-Multilingual",
|
721 |
-
"ginipick/ginimedi": "https://huggingface.co/spaces/ginipick/ginimedi",
|
722 |
-
"ginipick/ginilaw": "https://huggingface.co/spaces/ginipick/ginilaw",
|
723 |
-
"ginipick/ginipharm": "https://huggingface.co/spaces/ginipick/ginipharm",
|
724 |
-
"ginipick/FitGen": "https://huggingface.co/spaces/ginipick/FitGen",
|
725 |
-
"fantaxy/FLUX-Animations": "https://huggingface.co/spaces/fantaxy/FLUX-Animations",
|
726 |
-
"fantaxy/Remove-Video-Background": "https://huggingface.co/spaces/fantaxy/Remove-Video-Background",
|
727 |
-
"fantaxy/ofai-flx-logo": "https://huggingface.co/spaces/fantaxy/ofai-flx-logo",
|
728 |
-
"fantaxy/flx-pulid": "https://huggingface.co/spaces/fantaxy/flx-pulid",
|
729 |
-
"fantaxy/flx-upscale": "https://huggingface.co/spaces/fantaxy/flx-upscale",
|
730 |
-
"aiqcamp/Fashion-FLUX": "https://huggingface.co/spaces/aiqcamp/Fashion-FLUX",
|
731 |
-
"ginipick/StyleGen": "https://huggingface.co/spaces/ginipick/StyleGen",
|
732 |
-
"openfree/StoryStar": "https://huggingface.co/spaces/openfree/StoryStar",
|
733 |
-
"fantos/x-mas": "https://huggingface.co/spaces/fantos/x-mas",
|
734 |
-
"openfree/Korean-Leaderboard": "https://huggingface.co/spaces/openfree/Korean-Leaderboard",
|
735 |
-
"ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
|
736 |
-
"ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
|
737 |
-
"fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
|
738 |
-
"fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
|
739 |
-
"ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
|
740 |
-
"fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
|
741 |
-
"ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
|
742 |
-
"aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
|
743 |
-
"openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
|
744 |
-
"openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
|
745 |
-
"VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
|
746 |
-
"kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
|
747 |
-
"ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
|
748 |
-
"openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
|
749 |
-
"cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
|
750 |
-
"openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
|
751 |
-
"VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
|
752 |
-
"ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
|
753 |
-
"aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
|
754 |
-
"openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
|
755 |
-
"kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
|
756 |
-
"openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
|
757 |
-
"ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
|
758 |
-
"VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
|
759 |
-
"kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
|
760 |
-
"fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
|
761 |
-
"kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
|
762 |
-
"VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
|
763 |
-
"aiqmaster/stocksimulation": "https://huggingface.co/spaces/aiqmaster/stocksimulation",
|
764 |
-
"aiqmaster/assetai": "https://huggingface.co/spaces/aiqmaster/assetai",
|
765 |
-
"aiqmaster/stockai": "https://huggingface.co/spaces/aiqmaster/stockai",
|
766 |
-
"cutechicken/TankWar3D": "https://huggingface.co/spaces/cutechicken/TankWar3D",
|
767 |
-
"kolaslab/RC4-EnDecoder": "https://huggingface.co/spaces/kolaslab/RC4-EnDecoder",
|
768 |
-
"kolaslab/simulator": "https://huggingface.co/spaces/kolaslab/simulator",
|
769 |
-
"kolaslab/calculator": "https://huggingface.co/spaces/kolaslab/calculator",
|
770 |
-
"aiqtech/kofaceid": "https://huggingface.co/spaces/aiqtech/kofaceid",
|
771 |
-
"fantaxy/fastvideogena": "https://huggingface.co/spaces/fantaxy/fastvideogen",
|
772 |
-
"fantos/cogvidx": "https://huggingface.co/spaces/fantos/cogvidx",
|
773 |
-
"fantos/flxfashmodel": "https://huggingface.co/spaces/fantos/flxfashmodel",
|
774 |
-
"fantos/kolcontrl": "https://huggingface.co/spaces/fantos/kolcontrl",
|
775 |
-
"fantos/EveryText": "https://huggingface.co/spaces/fantos/EveryText",
|
776 |
-
"aiqtech/cinevid": "https://huggingface.co/spaces/aiqtech/cinevid",
|
777 |
-
"aiqtech/FLUX-Ghibli-Studio-LoRA": "https://huggingface.co/spaces/aiqtech/FLUX-Ghibli-Studio-LoRA",
|
778 |
-
"aiqtech/flxgif": "https://huggingface.co/spaces/aiqtech/flxgif",
|
779 |
-
"aiqtech/imaginpaint": "https://huggingface.co/spaces/aiqtech/imaginpaint",
|
780 |
-
|
781 |
-
|
782 |
-
"upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
|
783 |
-
"LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
|
784 |
-
"LeeSangHoon/HierSpeech_TTS": "https://huggingface.co/spaces/LeeSangHoon/HierSpeech_TTS",
|
785 |
-
"etri-vilab/Ko-LLaVA": "https://huggingface.co/spaces/etri-vilab/Ko-LLaVA",
|
786 |
-
"etri-vilab/KOALA": "https://huggingface.co/spaces/etri-vilab/KOALA",
|
787 |
-
"naver-clova-ix/donut-base-finetuned-cord-v2": "https://huggingface.co/spaces/naver-clova-ix/donut-base-finetuned-cord-v2",
|
788 |
-
"NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
|
789 |
-
}
|
790 |
-
|
791 |
-
def get_spaces_data(sort_type="trending", progress=gr.Progress()):
|
792 |
-
"""스페이스 데이터 가져오기 (trending 또는 modes)"""
|
793 |
-
url = "https://huggingface.co/api/spaces"
|
794 |
-
params = {
|
795 |
-
'full': 'true',
|
796 |
-
'limit': 500
|
797 |
-
}
|
798 |
-
|
799 |
-
if sort_type == "modes":
|
800 |
-
params['sort'] = 'likes'
|
801 |
-
|
802 |
-
try:
|
803 |
-
progress(0, desc=f"Fetching {sort_type} spaces data...")
|
804 |
-
response = requests.get(url, params=params)
|
805 |
-
response.raise_for_status()
|
806 |
-
all_spaces = response.json()
|
807 |
-
|
808 |
-
# 순위 정보 저장
|
809 |
-
space_ranks = {}
|
810 |
-
for idx, space in enumerate(all_spaces, 1):
|
811 |
-
space_id = space.get('id', '')
|
812 |
-
if space_id in target_spaces:
|
813 |
-
space['rank'] = idx
|
814 |
-
space_ranks[space_id] = space
|
815 |
-
|
816 |
-
spaces = [space_ranks[space_id] for space_id in space_ranks.keys()]
|
817 |
-
spaces.sort(key=lambda x: x['rank'])
|
818 |
-
|
819 |
-
progress(0.3, desc="Creating visualization...")
|
820 |
-
|
821 |
-
# 시각화 생성
|
822 |
-
fig = go.Figure()
|
823 |
-
|
824 |
-
# 데이터 준비
|
825 |
-
ids = [space['id'] for space in spaces]
|
826 |
-
ranks = [space['rank'] for space in spaces]
|
827 |
-
likes = [space.get('likes', 0) for space in spaces]
|
828 |
-
titles = [space.get('cardData', {}).get('title') or space.get('title', 'No Title') for space in spaces]
|
829 |
-
|
830 |
-
# 막대 그래프 생성
|
831 |
-
fig.add_trace(go.Bar(
|
832 |
-
x=ids,
|
833 |
-
y=ranks,
|
834 |
-
text=[f"Rank: {r}<br>Title: {t}<br>Likes: {l}"
|
835 |
-
for r, t, l in zip(ranks, titles, likes)],
|
836 |
-
textposition='auto',
|
837 |
-
marker_color='rgb(158,202,225)',
|
838 |
-
opacity=0.8
|
839 |
-
))
|
840 |
-
|
841 |
-
fig.update_layout(
|
842 |
-
title={
|
843 |
-
'text': f'Hugging Face Spaces {sort_type.title()} Rankings (Top 500)',
|
844 |
-
'y':0.95,
|
845 |
-
'x':0.5,
|
846 |
-
'xanchor': 'center',
|
847 |
-
'yanchor': 'top'
|
848 |
-
},
|
849 |
-
xaxis_title='Space ID',
|
850 |
-
yaxis_title='Rank',
|
851 |
-
yaxis=dict(
|
852 |
-
autorange='reversed', # Y축을 반전
|
853 |
-
tickmode='array',
|
854 |
-
ticktext=[str(i) for i in range(1, 501, 20)], # 1부터 400까지 20 간격으로 표시
|
855 |
-
tickvals=[i for i in range(1, 501, 20)],
|
856 |
-
range=[1, 500] # Y축 범위를 1부터 400까지로 설정
|
857 |
-
),
|
858 |
-
height=800,
|
859 |
-
showlegend=False,
|
860 |
-
template='plotly_white',
|
861 |
-
xaxis_tickangle=-45
|
862 |
-
)
|
863 |
-
|
864 |
-
progress(0.6, desc="Creating space cards...")
|
865 |
-
|
866 |
-
# HTML 카드 생성
|
867 |
-
html_content = f"""
|
868 |
-
<div style='padding: 20px; background: #f5f5f5;'>
|
869 |
-
<h2 style='color: #2c3e50;'>{sort_type.title()} Rankings</h2>
|
870 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
871 |
-
"""
|
872 |
-
|
873 |
-
for space in spaces:
|
874 |
-
space_id = space['id']
|
875 |
-
rank = space['rank']
|
876 |
-
title = space.get('cardData', {}).get('title') or space.get('title', 'No Title')
|
877 |
-
likes = space.get('likes', 0)
|
878 |
-
|
879 |
-
html_content += f"""
|
880 |
-
<div style='
|
881 |
-
background: white;
|
882 |
-
padding: 20px;
|
883 |
-
border-radius: 10px;
|
884 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
885 |
-
transition: transform 0.2s;
|
886 |
-
'>
|
887 |
-
<h3 style='color: #34495e;'>Rank #{rank} - {space_id}</h3>
|
888 |
-
<h4 style='
|
889 |
-
color: #2980b9;
|
890 |
-
margin: 10px 0;
|
891 |
-
font-size: 1.2em;
|
892 |
-
font-weight: bold;
|
893 |
-
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
|
894 |
-
background: linear-gradient(to right, #3498db, #2980b9);
|
895 |
-
-webkit-background-clip: text;
|
896 |
-
-webkit-text-fill-color: transparent;
|
897 |
-
padding: 5px 0;
|
898 |
-
'>{title}</h4>
|
899 |
-
<p style='color: #7f8c8d; margin-bottom: 10px;'>👍 Likes: {likes}</p>
|
900 |
-
<a href='{target_spaces[space_id]}'
|
901 |
-
target='_blank'
|
902 |
-
style='
|
903 |
-
display: inline-block;
|
904 |
-
padding: 8px 16px;
|
905 |
-
background: #3498db;
|
906 |
-
color: white;
|
907 |
-
text-decoration: none;
|
908 |
-
border-radius: 5px;
|
909 |
-
transition: background 0.3s;
|
910 |
-
'>
|
911 |
-
Visit Space 🔗
|
912 |
-
</a>
|
913 |
-
</div>
|
914 |
-
"""
|
915 |
-
|
916 |
-
html_content += "</div></div>"
|
917 |
-
|
918 |
-
# 데이터프레임 생성
|
919 |
-
df = pd.DataFrame([{
|
920 |
-
'Rank': space['rank'],
|
921 |
-
'Space ID': space['id'],
|
922 |
-
'Title': space.get('cardData', {}).get('title') or space.get('title', 'No Title'),
|
923 |
-
'Likes': space.get('likes', 0),
|
924 |
-
'URL': target_spaces[space['id']]
|
925 |
-
} for space in spaces])
|
926 |
-
|
927 |
-
progress(1.0, desc="Complete!")
|
928 |
-
return fig, html_content, df
|
929 |
-
|
930 |
-
except Exception as e:
|
931 |
-
print(f"Error in get_spaces_data: {str(e)}")
|
932 |
-
error_html = f'<div style="color: red; padding: 20px;">Error: {str(e)}</div>'
|
933 |
-
error_plot = create_error_plot()
|
934 |
-
return error_plot, error_html, pd.DataFrame()
|
935 |
-
|
936 |
-
|
937 |
-
def create_trend_visualization(spaces_data):
|
938 |
-
if not spaces_data:
|
939 |
-
return create_error_plot()
|
940 |
-
|
941 |
-
fig = go.Figure()
|
942 |
-
|
943 |
-
# 순위 데이터 준비
|
944 |
-
ranks = []
|
945 |
-
for idx, space in enumerate(spaces_data, 1):
|
946 |
-
space_id = space.get('id', '')
|
947 |
-
if space_id in target_spaces:
|
948 |
-
ranks.append({
|
949 |
-
'id': space_id,
|
950 |
-
'rank': idx,
|
951 |
-
'likes': space.get('likes', 0),
|
952 |
-
'title': space.get('title', 'N/A'),
|
953 |
-
'views': space.get('views', 0)
|
954 |
-
})
|
955 |
-
|
956 |
-
if not ranks:
|
957 |
-
return create_error_plot()
|
958 |
-
|
959 |
-
# 순위별로 정렬
|
960 |
-
ranks.sort(key=lambda x: x['rank'])
|
961 |
-
|
962 |
-
# 플롯 데이터 생성
|
963 |
-
ids = [r['id'] for r in ranks]
|
964 |
-
rank_values = [r['rank'] for r in ranks]
|
965 |
-
likes = [r['likes'] for r in ranks]
|
966 |
-
views = [r['views'] for r in ranks]
|
967 |
-
|
968 |
-
# 막대 그래프 생성
|
969 |
-
fig.add_trace(go.Bar(
|
970 |
-
x=ids,
|
971 |
-
y=rank_values,
|
972 |
-
text=[f"Rank: {r}<br>Likes: {l}<br>Views: {v}" for r, l, v in zip(rank_values, likes, views)],
|
973 |
-
textposition='auto',
|
974 |
-
marker_color='rgb(158,202,225)',
|
975 |
-
opacity=0.8
|
976 |
-
))
|
977 |
-
|
978 |
-
fig.update_layout(
|
979 |
-
title={
|
980 |
-
'text': 'Current Trending Ranks (All Target Spaces)',
|
981 |
-
'y':0.95,
|
982 |
-
'x':0.5,
|
983 |
-
'xanchor': 'center',
|
984 |
-
'yanchor': 'top'
|
985 |
-
},
|
986 |
-
xaxis_title='Space ID',
|
987 |
-
yaxis_title='Trending Rank',
|
988 |
-
yaxis_autorange='reversed',
|
989 |
-
height=800,
|
990 |
-
showlegend=False,
|
991 |
-
template='plotly_white',
|
992 |
-
xaxis_tickangle=-45
|
993 |
-
)
|
994 |
-
|
995 |
-
return fig
|
996 |
-
|
997 |
-
# 토큰이 없는 경우를 위한 대체 함수
|
998 |
-
def get_trending_spaces_without_token():
|
999 |
-
try:
|
1000 |
-
url = "https://huggingface.co/api/spaces"
|
1001 |
-
params = {
|
1002 |
-
'sort': 'likes',
|
1003 |
-
'direction': -1,
|
1004 |
-
'limit': 500,
|
1005 |
-
'full': 'true'
|
1006 |
-
}
|
1007 |
-
|
1008 |
-
response = requests.get(url, params=params)
|
1009 |
-
|
1010 |
-
if response.status_code == 200:
|
1011 |
-
return response.json()
|
1012 |
-
else:
|
1013 |
-
print(f"API 요청 실패 (토큰 없음): {response.status_code}")
|
1014 |
-
print(f"Response: {response.text}")
|
1015 |
-
return None
|
1016 |
-
except Exception as e:
|
1017 |
-
print(f"API 호출 중 에러 발생 (토큰 없음): {str(e)}")
|
1018 |
-
return None
|
1019 |
-
|
1020 |
-
# API 토큰 설정 및 함수 선택
|
1021 |
-
if not HF_TOKEN:
|
1022 |
-
get_trending_spaces = get_trending_spaces_without_token
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
def create_error_plot():
|
1027 |
-
fig = go.Figure()
|
1028 |
-
fig.add_annotation(
|
1029 |
-
text="데이터를 불러올 수 없습니다.\n(API 인증이 필요합니다)",
|
1030 |
-
xref="paper",
|
1031 |
-
yref="paper",
|
1032 |
-
x=0.5,
|
1033 |
-
y=0.5,
|
1034 |
-
showarrow=False,
|
1035 |
-
font=dict(size=20)
|
1036 |
-
)
|
1037 |
-
fig.update_layout(
|
1038 |
-
title="Error Loading Data",
|
1039 |
-
height=400
|
1040 |
-
)
|
1041 |
-
return fig
|
1042 |
-
|
1043 |
-
|
1044 |
-
def create_space_info_html(spaces_data):
|
1045 |
-
if not spaces_data:
|
1046 |
-
return "<div style='padding: 20px;'><h2>데이터를 불러오는데 실패했습니다.</h2></div>"
|
1047 |
-
|
1048 |
-
html_content = """
|
1049 |
-
<div style='padding: 20px;'>
|
1050 |
-
<h2 style='color: #2c3e50;'>Current Trending Rankings</h2>
|
1051 |
-
<div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px;'>
|
1052 |
-
"""
|
1053 |
-
|
1054 |
-
# 모든 target spaces를 포함하도록 수정
|
1055 |
-
for space_id in target_spaces.keys():
|
1056 |
-
space_info = next((s for s in spaces_data if s.get('id') == space_id), None)
|
1057 |
-
if space_info:
|
1058 |
-
rank = next((idx for idx, s in enumerate(spaces_data, 1) if s.get('id') == space_id), 'N/A')
|
1059 |
-
html_content += f"""
|
1060 |
-
<div style='
|
1061 |
-
background: white;
|
1062 |
-
padding: 20px;
|
1063 |
-
border-radius: 10px;
|
1064 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
1065 |
-
transition: transform 0.2s;
|
1066 |
-
'>
|
1067 |
-
<h3 style='color: #34495e;'>#{rank} - {space_id}</h3>
|
1068 |
-
<p style='color: #7f8c8d;'>👍 Likes: {space_info.get('likes', 'N/A')}</p>
|
1069 |
-
<p style='color: #7f8c8d;'>👀 Views: {space_info.get('views', 'N/A')}</p>
|
1070 |
-
<p style='color: #2c3e50;'>{space_info.get('title', 'N/A')}</p>
|
1071 |
-
<p style='color: #7f8c8d; font-size: 0.9em;'>{space_info.get('description', 'N/A')[:100]}...</p>
|
1072 |
-
<a href='{target_spaces[space_id]}'
|
1073 |
-
target='_blank'
|
1074 |
-
style='
|
1075 |
-
display: inline-block;
|
1076 |
-
padding: 8px 16px;
|
1077 |
-
background: #3498db;
|
1078 |
-
color: white;
|
1079 |
-
text-decoration: none;
|
1080 |
-
border-radius: 5px;
|
1081 |
-
transition: background 0.3s;
|
1082 |
-
'>
|
1083 |
-
Visit Space 🔗
|
1084 |
-
</a>
|
1085 |
-
</div>
|
1086 |
-
"""
|
1087 |
-
else:
|
1088 |
-
html_content += f"""
|
1089 |
-
<div style='
|
1090 |
-
background: #f8f9fa;
|
1091 |
-
padding: 20px;
|
1092 |
-
border-radius: 10px;
|
1093 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
1094 |
-
'>
|
1095 |
-
<h3 style='color: #34495e;'>{space_id}</h3>
|
1096 |
-
<p style='color: #7f8c8d;'>Not in trending</p>
|
1097 |
-
<a href='{target_spaces[space_id]}'
|
1098 |
-
target='_blank'
|
1099 |
-
style='
|
1100 |
-
display: inline-block;
|
1101 |
-
padding: 8px 16px;
|
1102 |
-
background: #95a5a6;
|
1103 |
-
color: white;
|
1104 |
-
text-decoration: none;
|
1105 |
-
border-radius: 5px;
|
1106 |
-
'>
|
1107 |
-
Visit Space 🔗
|
1108 |
-
</a>
|
1109 |
-
</div>
|
1110 |
-
"""
|
1111 |
-
|
1112 |
-
html_content += "</div></div>"
|
1113 |
-
return html_content
|
1114 |
-
|
1115 |
-
def create_data_table(spaces_data):
|
1116 |
-
if not spaces_data:
|
1117 |
-
return pd.DataFrame()
|
1118 |
-
|
1119 |
-
rows = []
|
1120 |
-
for idx, space in enumerate(spaces_data, 1):
|
1121 |
-
space_id = space.get('id', '')
|
1122 |
-
if space_id in target_spaces:
|
1123 |
-
rows.append({
|
1124 |
-
'Rank': idx,
|
1125 |
-
'Space ID': space_id,
|
1126 |
-
'Likes': space.get('likes', 'N/A'),
|
1127 |
-
'Title': space.get('title', 'N/A'),
|
1128 |
-
'URL': target_spaces[space_id]
|
1129 |
-
})
|
1130 |
-
|
1131 |
-
return pd.DataFrame(rows)
|
1132 |
-
|
1133 |
-
def refresh_data():
|
1134 |
-
spaces_data = get_trending_spaces()
|
1135 |
-
if spaces_data:
|
1136 |
-
plot = create_trend_visualization(spaces_data)
|
1137 |
-
info = create_space_info_html(spaces_data)
|
1138 |
-
df = create_data_table(spaces_data)
|
1139 |
-
return plot, info, df
|
1140 |
-
else:
|
1141 |
-
return create_error_plot(), "<div>API 인증이 필요합니다.</div>", pd.DataFrame()
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
def create_registration_bar_chart(data, type_name="Spaces"):
|
1146 |
-
try:
|
1147 |
-
# TOP 기준 설정
|
1148 |
-
top_limit = 500 if type_name == "Spaces" else 3000
|
1149 |
-
|
1150 |
-
# DataFrame인 경우 처리
|
1151 |
-
if isinstance(data, pd.DataFrame):
|
1152 |
-
if type_name == "Models":
|
1153 |
-
# 3000위 이내의 모델만 필터링
|
1154 |
-
data = data[data['Global Rank'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.startswith('#')))]
|
1155 |
-
data = data[data['Global Rank'].apply(lambda x: int(str(x).replace('#', '')) if isinstance(x, str) else x) <= top_limit]
|
1156 |
-
elif type_name == "Spaces":
|
1157 |
-
# 500위 이내의 스페이스만 필터링
|
1158 |
-
data = data[data['Rank'].apply(lambda x: isinstance(x, (int, float))) & (data['Rank'] <= top_limit)]
|
1159 |
-
|
1160 |
-
# ID 컬럼 선택
|
1161 |
-
id_column = 'Space ID' if type_name == "Spaces" else 'Model ID'
|
1162 |
-
registrations = data[id_column].apply(lambda x: x.split('/')[0]).value_counts()
|
1163 |
-
else:
|
1164 |
-
# 리스트나 다른 형태의 데이터인 경우 처리
|
1165 |
-
registrations = {}
|
1166 |
-
for item in data:
|
1167 |
-
if isinstance(item, dict):
|
1168 |
-
rank = item.get('global_rank' if type_name == "Models" else 'rank')
|
1169 |
-
if isinstance(rank, str) or rank > top_limit:
|
1170 |
-
continue
|
1171 |
-
creator = item.get('id', '').split('/')[0]
|
1172 |
-
registrations[creator] = registrations.get(creator, 0) + 1
|
1173 |
-
registrations = pd.Series(registrations)
|
1174 |
-
|
1175 |
-
# 정렬된 데이터 준비
|
1176 |
-
registrations = registrations.sort_values(ascending=False)
|
1177 |
-
|
1178 |
-
fig = go.Figure(data=[go.Bar(
|
1179 |
-
x=registrations.index,
|
1180 |
-
y=registrations.values,
|
1181 |
-
text=registrations.values,
|
1182 |
-
textposition='auto',
|
1183 |
-
marker_color='#FF6B6B'
|
1184 |
-
)])
|
1185 |
-
|
1186 |
-
fig.update_layout(
|
1187 |
-
title=f"Korean {type_name} Registrations by Creator (Top {top_limit})",
|
1188 |
-
xaxis_title="Creator ID",
|
1189 |
-
yaxis_title="Number of Registrations",
|
1190 |
-
showlegend=False,
|
1191 |
-
height=400,
|
1192 |
-
width=700
|
1193 |
-
)
|
1194 |
-
|
1195 |
-
return fig
|
1196 |
-
except Exception as e:
|
1197 |
-
print(f"Error in create_registration_bar_chart: {str(e)}")
|
1198 |
-
return go.Figure()
|
1199 |
-
|
1200 |
-
def create_pie_chart(data, total_count, type_name="Spaces"):
|
1201 |
-
try:
|
1202 |
-
# TOP 기준 설정
|
1203 |
-
top_limit = 500 if type_name == "Spaces" else 3000
|
1204 |
-
|
1205 |
-
# DataFrame인 경우 처리
|
1206 |
-
if isinstance(data, pd.DataFrame):
|
1207 |
-
if type_name == "Models":
|
1208 |
-
# 3000위 이내의 모델만 필터링
|
1209 |
-
data = data[data['Global Rank'].apply(lambda x: isinstance(x, (int, float)) or (isinstance(x, str) and x.startswith('#')))]
|
1210 |
-
data = data[data['Global Rank'].apply(lambda x: int(str(x).replace('#', '')) if isinstance(x, str) else x) <= top_limit]
|
1211 |
-
elif type_name == "Spaces":
|
1212 |
-
# 500위 이내의 스페이스만 필터링
|
1213 |
-
data = data[data['Rank'].apply(lambda x: isinstance(x, (int, float))) & (data['Rank'] <= top_limit)]
|
1214 |
-
korean_count = len(data)
|
1215 |
-
else:
|
1216 |
-
# 리스트나 다른 형태의 데이터인 경우 처리
|
1217 |
-
if type_name == "Models":
|
1218 |
-
korean_count = sum(1 for item in data if isinstance(item.get('global_rank'), (int, float)) and item.get('global_rank') <= top_limit)
|
1219 |
-
else:
|
1220 |
-
korean_count = sum(1 for item in data if isinstance(item.get('rank'), (int, float)) and item.get('rank') <= top_limit)
|
1221 |
-
|
1222 |
-
other_count = total_count - korean_count
|
1223 |
-
|
1224 |
-
fig = go.Figure(data=[go.Pie(
|
1225 |
-
labels=[f'Korean {type_name} in Top {top_limit}', f'Other {type_name} in Top {top_limit}'],
|
1226 |
-
values=[korean_count, other_count],
|
1227 |
-
hole=.3,
|
1228 |
-
marker_colors=['#FF6B6B', '#4ECDC4'],
|
1229 |
-
textinfo='percent+value',
|
1230 |
-
hovertemplate="<b>%{label}</b><br>" +
|
1231 |
-
"Count: %{value}<br>" +
|
1232 |
-
"Percentage: %{percent}<br>"
|
1233 |
-
)])
|
1234 |
-
|
1235 |
-
fig.update_layout(
|
1236 |
-
title=f"Korean vs Other {type_name} Distribution (Top {top_limit})",
|
1237 |
-
showlegend=True,
|
1238 |
-
height=400,
|
1239 |
-
width=500
|
1240 |
-
)
|
1241 |
-
|
1242 |
-
return fig
|
1243 |
-
except Exception as e:
|
1244 |
-
print(f"Error in create_pie_chart: {str(e)}")
|
1245 |
-
return go.Figure()
|
1246 |
-
|
1247 |
-
def refresh_all_data():
|
1248 |
-
spaces_results = get_spaces_data("trending")
|
1249 |
-
models_results = get_models_data()
|
1250 |
-
|
1251 |
-
# Spaces 차트 생성
|
1252 |
-
spaces_pie = create_pie_chart(spaces_results[2], 500, "Spaces")
|
1253 |
-
spaces_bar = create_registration_bar_chart(spaces_results[2], "Spaces")
|
1254 |
-
|
1255 |
-
# Models 차트 생성
|
1256 |
-
models_pie = create_pie_chart(models_results[2], 3000, "Models")
|
1257 |
-
models_bar = create_registration_bar_chart(models_results[2], "Models")
|
1258 |
-
|
1259 |
-
return [
|
1260 |
-
spaces_results[0], spaces_results[1], spaces_results[2],
|
1261 |
-
spaces_pie, spaces_bar,
|
1262 |
-
models_results[0], models_results[1], models_results[2],
|
1263 |
-
models_pie, models_bar
|
1264 |
-
]
|
1265 |
-
|
1266 |
-
|
1267 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css="""
|
1268 |
-
#spaces_pie, #models_pie {
|
1269 |
-
min-height: 400px;
|
1270 |
-
border-radius: 10px;
|
1271 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
1272 |
-
}
|
1273 |
-
#spaces_bar, #models_bar {
|
1274 |
-
min-height: 400px;
|
1275 |
-
border-radius: 10px;
|
1276 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
1277 |
-
}
|
1278 |
-
""") as demo:
|
1279 |
-
|
1280 |
-
gr.Markdown("""
|
1281 |
-
# 🤗 허깅페이스 '한국(언어) 리더보드'
|
1282 |
-
HuggingFace가 제공하는 Spaces와 Models 실시간 인기 순위 반영하여 '한국인(기업/언어)'의 리스트(공개,검색,리더보드 등)만 분석. (c)'한국인공지능진흥협회' / 요청: [email protected]
|
1283 |
-
""")
|
1284 |
-
|
1285 |
-
# 이미지와 설명 추가
|
1286 |
-
gr.Markdown("""
|
1287 |
-
### [Hot NEWS] 허깅페이스 선정 12월 'TOP 12'에 한국 'ginipick'의 'FLUXllama'와 'Text3D' 2종이 선정됨
|
1288 |
-
""")
|
1289 |
-
gr.Image("HF-TOP12.png", show_label=False)
|
1290 |
-
|
1291 |
-
# 새로 고침 버튼 (기존 코드)
|
1292 |
-
refresh_btn = gr.Button("🔄 새로 고침", variant="primary")
|
1293 |
-
|
1294 |
-
|
1295 |
-
with gr.Tab("Spaces Trending"):
|
1296 |
-
trending_plot = gr.Plot()
|
1297 |
-
with gr.Row():
|
1298 |
-
# 원형 그래프와 막대 그래프를 위한 컨테이너 추가
|
1299 |
-
with gr.Column(scale=1):
|
1300 |
-
spaces_pie_chart = gr.Plot(
|
1301 |
-
label="Korean Spaces Distribution",
|
1302 |
-
elem_id="spaces_pie"
|
1303 |
-
)
|
1304 |
-
with gr.Column(scale=2):
|
1305 |
-
spaces_bar_chart = gr.Plot(
|
1306 |
-
label="Registrations by Creator",
|
1307 |
-
elem_id="spaces_bar"
|
1308 |
-
)
|
1309 |
-
trending_info = gr.HTML()
|
1310 |
-
trending_df = gr.DataFrame(
|
1311 |
-
headers=["Rank", "Space ID", "Title", "Likes", "URL"],
|
1312 |
-
datatype=["number", "str", "str", "number", "str"],
|
1313 |
-
row_count=(10, "dynamic")
|
1314 |
-
)
|
1315 |
-
|
1316 |
-
with gr.Tab("Models Trending"):
|
1317 |
-
models_plot = gr.Plot()
|
1318 |
-
with gr.Row():
|
1319 |
-
# 원형 그래프와 막대 그래프를 위한 컨테이너 추가
|
1320 |
-
with gr.Column(scale=1):
|
1321 |
-
models_pie_chart = gr.Plot(
|
1322 |
-
label="Korean Models Distribution",
|
1323 |
-
elem_id="models_pie"
|
1324 |
-
)
|
1325 |
-
with gr.Column(scale=2):
|
1326 |
-
models_bar_chart = gr.Plot(
|
1327 |
-
label="Registrations by Creator",
|
1328 |
-
elem_id="models_bar"
|
1329 |
-
)
|
1330 |
-
models_info = gr.HTML()
|
1331 |
-
models_df = gr.DataFrame(
|
1332 |
-
headers=["Global Rank", "Model ID", "Title", "Downloads", "Likes", "Korea Search", "URL"],
|
1333 |
-
datatype=["str", "str", "str", "str", "str", "str", "str"],
|
1334 |
-
row_count=(10, "dynamic")
|
1335 |
-
)
|
1336 |
-
|
1337 |
-
def refresh_all_data():
|
1338 |
-
try:
|
1339 |
-
spaces_results = get_spaces_data("trending")
|
1340 |
-
models_results = get_models_data()
|
1341 |
-
|
1342 |
-
# Spaces 차트 생성
|
1343 |
-
spaces_pie = create_pie_chart(spaces_results[2], 500, "Spaces")
|
1344 |
-
spaces_bar = create_registration_bar_chart(spaces_results[2], "Spaces")
|
1345 |
-
|
1346 |
-
# Models 차트 생성
|
1347 |
-
models_pie = create_pie_chart(models_results[2], 3000, "Models")
|
1348 |
-
models_bar = create_registration_bar_chart(models_results[2], "Models")
|
1349 |
-
|
1350 |
-
return [
|
1351 |
-
spaces_results[0], spaces_results[1], spaces_results[2],
|
1352 |
-
spaces_pie, spaces_bar,
|
1353 |
-
models_results[0], models_results[1], models_results[2],
|
1354 |
-
models_pie, models_bar
|
1355 |
-
]
|
1356 |
-
except Exception as e:
|
1357 |
-
print(f"Error in refresh_all_data: {str(e)}")
|
1358 |
-
# 에러 발생 시 기본값 반환
|
1359 |
-
return [None] * 10
|
1360 |
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
trending_plot, trending_info, trending_df,
|
1366 |
-
spaces_pie_chart, spaces_bar_chart,
|
1367 |
-
models_plot, models_info, models_df,
|
1368 |
-
models_pie_chart, models_bar_chart
|
1369 |
-
]
|
1370 |
-
)
|
1371 |
-
|
1372 |
-
# 초기 데이터 로드
|
1373 |
-
try:
|
1374 |
-
initial_data = refresh_all_data()
|
1375 |
-
|
1376 |
-
# 초기값 설정
|
1377 |
-
trending_plot.value = initial_data[0]
|
1378 |
-
trending_info.value = initial_data[1]
|
1379 |
-
trending_df.value = initial_data[2]
|
1380 |
-
spaces_pie_chart.value = initial_data[3]
|
1381 |
-
spaces_bar_chart.value = initial_data[4]
|
1382 |
-
models_plot.value = initial_data[5]
|
1383 |
-
models_info.value = initial_data[6]
|
1384 |
-
models_df.value = initial_data[7]
|
1385 |
-
models_pie_chart.value = initial_data[8]
|
1386 |
-
models_bar_chart.value = initial_data[9]
|
1387 |
-
except Exception as e:
|
1388 |
-
print(f"Error loading initial data: {str(e)}")
|
1389 |
-
gr.Warning("초기 데이터 로드 중 오류가 발생했습니다.")
|
1390 |
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
show_error=True
|
1397 |
-
)
|
|
|
1 |
+
import ast #추가 삽입, requirements: albumentations 추가
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
5 |
+
from transformers import AutoFeatureExtractor
|
6 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from insightface.app import FaceAnalysis
|
9 |
+
from insightface.utils import face_align
|
10 |
import gradio as gr
|
11 |
+
import cv2
|
|
|
|
|
|
|
12 |
import os
|
13 |
+
import sys
|
14 |
+
import uuid
|
15 |
+
from datetime import datetime
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
script_repr = os.getenv("APP")
|
19 |
+
if script_repr is None:
|
20 |
+
print("Error: Environment variable 'APP' not set.")
|
21 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
try:
|
24 |
+
exec(script_repr)
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error executing script: {e}")
|
27 |
+
sys.exit(1)
|
|
|
|