Spaces:
Runtime error
Runtime error
File size: 9,957 Bytes
826ffd7 77104eb e8d7a57 a67a358 e8d7a57 77104eb 826ffd7 24b5de4 826ffd7 e8d7a57 826ffd7 e8d7a57 826ffd7 e8d7a57 826ffd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
import gradio as gr
from gradio import ChatMessage
from typing import Iterator
import google.generativeai as genai
# get Gemini API Key from the environ variable
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
# we will be using the Gemini 2.0 Flash model with Thinking capabilities
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219") # Consider Gemini Pro Vision for Image input
def format_chat_history(messages: list) -> list:
"""
Formats the chat history into a structure Gemini can understand
"""
formatted_history = []
for message in messages:
# Skip thinking messages (messages with metadata)
if not (message.get("role") == "assistant" and "metadata" in message):
formatted_history.append({
"role": "user" if message.get("role") == "user" else "assistant",
"parts": [message.get("content", "")]
})
return formatted_history
def stream_gemini_response(message_input: str|gr.File, messages: list) -> Iterator[list]:
"""
Streams thoughts and response with conversation history support, handling text or file input.
"""
user_message = ""
input_file = None
if isinstance(message_input, str):
user_message = message_input
print(f"\n=== New Request (Text) ===")
print(f"User message (raw): {repr(user_message)}") # Debug print raw value
print(f"User message: {user_message}")
if not user_message: # Check if text message is explicitly empty (empty string "" directly)
messages.append(ChatMessage(role="assistant", content="Please provide a non-empty text message or upload a file. Empty text input is not allowed.")) # More specific message
yield messages
return
elif isinstance(message_input, gr.File): #gr.File directly should be used with newer gradio versions (v4+)
input_file = message_input.name # Access the temporary file path
file_type = message_input.original_name.split('.')[-1].lower() #Get original filename's extension
print(f"\n=== New Request (File) ===")
print(f"File uploaded: {input_file}, type: {file_type}")
try:
with open(input_file, "rb") as f: #Open file in binary mode for universal handling
file_data = f.read()
if file_type in ['png', 'jpg', 'jpeg', 'gif']: #Example Image Types - expand as needed
user_message = {"inline_data": {"mime_type": f"image/{file_type}", "data": file_data}} #Prepare image part for Gemini
elif file_type == 'csv':
user_message = {"inline_data": {"mime_type": "text/csv", "data": file_data}} #Prepare csv part
except Exception as e:
print(f"Error reading file: {e}")
messages.append(ChatMessage(role="assistant", content=f"Error reading file: {e}"))
yield messages
return
else:
messages.append(ChatMessage(role="assistant", content="Sorry, I cannot understand this input format. Please use text or upload a valid file.")) # More informative error
yield messages
return
try:
# Format chat history for Gemini
chat_history = format_chat_history(messages)
# Initialize Gemini chat
chat = model.start_chat(history=chat_history)
response = chat.send_message(user_message, stream=True) #Send the message part as is
# Initialize buffers and flags - same as before
thought_buffer = ""
response_buffer = ""
thinking_complete = False
# Add initial thinking message - same as before
messages.append(
ChatMessage(
role="assistant",
content="",
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
)
)
for chunk in response: #streaming logic - same as before
parts = chunk.candidates[0].content.parts
current_chunk = parts[0].text
if len(parts) == 2 and not thinking_complete:
# Complete thought and start response
thought_buffer += current_chunk
print(f"\n=== Complete Thought ===\n{thought_buffer}")
messages[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
)
yield messages
# Start response
response_buffer = parts[1].text
print(f"\n=== Starting Response ===\n{response_buffer}")
messages.append(
ChatMessage(
role="assistant",
content=response_buffer
)
)
thinking_complete = True
elif thinking_complete:
# Stream response
response_buffer += current_chunk
print(f"\n=== Response Chunk ===\n{current_chunk}")
messages[-1] = ChatMessage(
role="assistant",
content=response_buffer
)
else:
# Stream thinking
thought_buffer += current_chunk
print(f"\n=== Thinking Chunk ===\n{thought_buffer}")
messages[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
)
yield messages
print(f"\n=== Final Response ===\n{response_buffer}")
except Exception as e:
print(f"\n=== Error ===\n{str(e)}")
messages.append(
ChatMessage(
role="assistant",
content=f"I apologize, but I encountered an error: {str(e)}"
)
)
yield messages
def user_message(message_text, file_upload, history: list) -> tuple[str, None, list]:
"""Adds user message to chat history"""
print(f"\n=== User Message Input Check ====") #debug
print(f"Message Text: {repr(message_text)}") #debug raw text value
print(f"File Upload: {file_upload}") #debug file upload object
msg = message_text if message_text else file_upload
history.append(ChatMessage(role="user", content=msg if isinstance(msg, str) else msg.name)) #Store message or filename in history.
return "", None, history #clear both input fields
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="slate", neutral_hue="neutral")) as demo:
gr.Markdown("# Gemini 2.0 Flash 'Thinking' Chatbot 💭")
chatbot = gr.Chatbot(
type="messages",
label="Gemini2.0 'Thinking' Chatbot",
render_markdown=True,
scale=1,
avatar_images=(None,"https://lh3.googleusercontent.com/oxz0sUBF0iYoN4VvhqWTmux-cxfD1rxuYkuFEfm1SFaseXEsjjE4Je_C_V3UQPuJ87sImQK3HfQ3RXiaRnQetjaZbjJJUkiPL5jFJ1WRl5FKJZYibUA=w214-h214-n-nu")
)
with gr.Row(equal_height=True):
input_box = gr.Textbox(
lines=1,
label="Chat Message",
placeholder="Type your message here...",
scale=3
)
file_upload = gr.File(label="Upload File", file_types=["image", ".csv"], scale=2) # Allow image and CSV files
clear_button = gr.Button("Clear Chat", scale=1)
# Set up event handlers
msg_store = gr.State("") # Store for preserving user message
input_box.submit(
user_message,
inputs=[input_box, file_upload, chatbot],
outputs=[input_box, file_upload, chatbot],
queue=False
).then(
stream_gemini_response,
inputs=[input_box, chatbot], # Input either from text box or file, logic inside stream_gemini_response
outputs=chatbot
)
file_upload.upload(
user_message,
inputs=[input_box, file_upload, chatbot], # even textbox is input here so clearing both will work
outputs=[input_box, file_upload, chatbot],
queue=False
).then(
stream_gemini_response,
inputs=[file_upload, chatbot], # Input is now the uploaded file.
outputs=chatbot
)
clear_button.click(
lambda: ([], "", ""),
outputs=[chatbot, input_box, msg_store],
queue=False
)
gr.Markdown( # Description moved to the bottom
"""
<br><br><br> <!-- Add some vertical space -->
---
### About this Chatbot
This chatbot demonstrates the experimental 'thinking' capability of the **Gemini 2.0 Flash** model.
You can observe the model's thought process as it generates responses, displayed with the "⚙️ Thinking" prefix.
**Key Features:**
* Powered by Google's **Gemini 2.0 Flash** model.
* Shows the model's **thoughts** before the final answer (experimental feature).
* Supports **conversation history** for multi-turn chats.
* Supports **Image and CSV file uploads** for analysis.
* Uses **streaming** for a more interactive experience.
**Instructions:**
1. Type your message in the input box or Upload a file below.
2. Press Enter/Submit or Upload to send.
3. Observe the chatbot's "Thinking" process followed by the final response.
4. Use the "Clear Chat" button to start a new conversation.
*Please note*: The 'thinking' feature is experimental and the quality of thoughts may vary. File analysis capabilities may be limited depending on the model's experimental features.
"""
)
# Launch the interface
if __name__ == "__main__":
demo.launch(debug=True) |