File size: 9,957 Bytes
826ffd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77104eb
 
 
e8d7a57
a67a358
e8d7a57
 
77104eb
826ffd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24b5de4
826ffd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d7a57
826ffd7
 
 
 
 
 
 
 
 
 
 
 
e8d7a57
 
 
826ffd7
 
 
 
e8d7a57
826ffd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import gradio as gr
from gradio import ChatMessage
from typing import Iterator
import google.generativeai as genai

# get Gemini API Key from the environ variable
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)

# we will be using the Gemini 2.0 Flash model with Thinking capabilities
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219") # Consider Gemini Pro Vision for Image input

def format_chat_history(messages: list) -> list:
    """
    Formats the chat history into a structure Gemini can understand
    """
    formatted_history = []
    for message in messages:
        # Skip thinking messages (messages with metadata)
        if not (message.get("role") == "assistant" and "metadata" in message):
            formatted_history.append({
                "role": "user" if message.get("role") == "user" else "assistant",
                "parts": [message.get("content", "")]
            })
    return formatted_history

def stream_gemini_response(message_input: str|gr.File, messages: list) -> Iterator[list]:
    """
    Streams thoughts and response with conversation history support, handling text or file input.
    """
    user_message = ""
    input_file = None

    if isinstance(message_input, str):
        user_message = message_input
        print(f"\n=== New Request (Text) ===")
        print(f"User message (raw): {repr(user_message)}") # Debug print raw value
        print(f"User message: {user_message}")
        if not user_message: # Check if text message is explicitly empty (empty string "" directly)
            messages.append(ChatMessage(role="assistant", content="Please provide a non-empty text message or upload a file. Empty text input is not allowed.")) # More specific message
            yield messages
            return

    elif isinstance(message_input, gr.File): #gr.File directly should be used with newer gradio versions (v4+)
        input_file = message_input.name # Access the temporary file path
        file_type = message_input.original_name.split('.')[-1].lower() #Get original filename's extension
        print(f"\n=== New Request (File) ===")
        print(f"File uploaded: {input_file}, type: {file_type}")

        try:
            with open(input_file, "rb") as f: #Open file in binary mode for universal handling
                file_data = f.read()

            if file_type in ['png', 'jpg', 'jpeg', 'gif']: #Example Image Types - expand as needed
                user_message = {"inline_data": {"mime_type": f"image/{file_type}", "data": file_data}} #Prepare image part for Gemini
            elif file_type == 'csv':
                user_message = {"inline_data": {"mime_type": "text/csv", "data": file_data}} #Prepare csv part

        except Exception as e:
            print(f"Error reading file: {e}")
            messages.append(ChatMessage(role="assistant", content=f"Error reading file: {e}"))
            yield messages
            return
    else:
        messages.append(ChatMessage(role="assistant", content="Sorry, I cannot understand this input format. Please use text or upload a valid file.")) # More informative error
        yield messages
        return


    try:
        # Format chat history for Gemini
        chat_history = format_chat_history(messages)

        # Initialize Gemini chat
        chat = model.start_chat(history=chat_history)
        response = chat.send_message(user_message, stream=True) #Send the message part as is

        # Initialize buffers and flags - same as before
        thought_buffer = ""
        response_buffer = ""
        thinking_complete = False

        # Add initial thinking message - same as before
        messages.append(
            ChatMessage(
                role="assistant",
                content="",
                metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
            )
        )

        for chunk in response: #streaming logic - same as before
            parts = chunk.candidates[0].content.parts
            current_chunk = parts[0].text

            if len(parts) == 2 and not thinking_complete:
                # Complete thought and start response
                thought_buffer += current_chunk
                print(f"\n=== Complete Thought ===\n{thought_buffer}")

                messages[-1] = ChatMessage(
                    role="assistant",
                    content=thought_buffer,
                    metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
                )
                yield messages

                # Start response
                response_buffer = parts[1].text
                print(f"\n=== Starting Response ===\n{response_buffer}")

                messages.append(
                    ChatMessage(
                        role="assistant",
                        content=response_buffer
                    )
                )
                thinking_complete = True

            elif thinking_complete:
                # Stream response
                response_buffer += current_chunk
                print(f"\n=== Response Chunk ===\n{current_chunk}")

                messages[-1] = ChatMessage(
                    role="assistant",
                    content=response_buffer
                )

            else:
                # Stream thinking
                thought_buffer += current_chunk
                print(f"\n=== Thinking Chunk ===\n{thought_buffer}")

                messages[-1] = ChatMessage(
                    role="assistant",
                    content=thought_buffer,
                    metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
                )

            yield messages

        print(f"\n=== Final Response ===\n{response_buffer}")


    except Exception as e:
        print(f"\n=== Error ===\n{str(e)}")
        messages.append(
            ChatMessage(
                role="assistant",
                content=f"I apologize, but I encountered an error: {str(e)}"
            )
        )
        yield messages

def user_message(message_text, file_upload, history: list) -> tuple[str, None, list]:
    """Adds user message to chat history"""
    print(f"\n=== User Message Input Check ====") #debug
    print(f"Message Text: {repr(message_text)}") #debug raw text value
    print(f"File Upload: {file_upload}") #debug file upload object
    msg = message_text if message_text else file_upload
    history.append(ChatMessage(role="user", content=msg if isinstance(msg, str) else msg.name)) #Store message or filename in history.
    return "", None, history #clear both input fields


# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="slate", neutral_hue="neutral")) as demo:
    gr.Markdown("# Gemini 2.0 Flash 'Thinking' Chatbot 💭")

    chatbot = gr.Chatbot(
        type="messages",
        label="Gemini2.0 'Thinking' Chatbot",
        render_markdown=True,
        scale=1,
        avatar_images=(None,"https://lh3.googleusercontent.com/oxz0sUBF0iYoN4VvhqWTmux-cxfD1rxuYkuFEfm1SFaseXEsjjE4Je_C_V3UQPuJ87sImQK3HfQ3RXiaRnQetjaZbjJJUkiPL5jFJ1WRl5FKJZYibUA=w214-h214-n-nu")
    )

    with gr.Row(equal_height=True):
        input_box = gr.Textbox(
            lines=1,
            label="Chat Message",
            placeholder="Type your message here...",
            scale=3
        )
        file_upload = gr.File(label="Upload File", file_types=["image", ".csv"], scale=2) # Allow image and CSV files

        clear_button = gr.Button("Clear Chat", scale=1)

    # Set up event handlers
    msg_store = gr.State("")  # Store for preserving user message


    input_box.submit(
        user_message,
        inputs=[input_box, file_upload, chatbot],
        outputs=[input_box, file_upload, chatbot],
        queue=False
    ).then(
        stream_gemini_response,
        inputs=[input_box, chatbot], # Input either from text box or file, logic inside stream_gemini_response
        outputs=chatbot
    )

    file_upload.upload(
        user_message,
        inputs=[input_box, file_upload, chatbot], # even textbox is input here so clearing both will work
        outputs=[input_box, file_upload, chatbot],
        queue=False
    ).then(
        stream_gemini_response,
        inputs=[file_upload, chatbot], # Input is now the uploaded file.
        outputs=chatbot
    )


    clear_button.click(
        lambda: ([], "", ""),
        outputs=[chatbot, input_box, msg_store],
        queue=False
    )

    gr.Markdown(  # Description moved to the bottom
        """
        <br><br><br>  <!-- Add some vertical space -->
        ---
        ### About this Chatbot
        This chatbot demonstrates the experimental 'thinking' capability of the **Gemini 2.0 Flash** model.
        You can observe the model's thought process as it generates responses, displayed with the "⚙️ Thinking" prefix.
        **Key Features:**
        *   Powered by Google's **Gemini 2.0 Flash** model.
        *   Shows the model's **thoughts** before the final answer (experimental feature).
        *   Supports **conversation history** for multi-turn chats.
        *   Supports **Image and CSV file uploads** for analysis.
        *   Uses **streaming** for a more interactive experience.
        **Instructions:**
        1.  Type your message in the input box or Upload a file below.
        2.  Press Enter/Submit or Upload to send.
        3.  Observe the chatbot's "Thinking" process followed by the final response.
        4.  Use the "Clear Chat" button to start a new conversation.
        *Please note*: The 'thinking' feature is experimental and the quality of thoughts may vary. File analysis capabilities may be limited depending on the model's experimental features.
        """
    )


# Launch the interface
if __name__ == "__main__":
    demo.launch(debug=True)