import torch import spaces from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL from transformers import AutoFeatureExtractor from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from insightface.utils import face_align import gradio as gr import cv2 import os import uuid from datetime import datetime # Model paths base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" vae_model_path = "stabilityai/sd-vae-ft-mse" image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") device = "cuda" # Initialize the noise scheduler noise_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) # Load models vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( base_model_path, torch_dtype=torch.float16, scheduler=noise_scheduler, vae=vae ).to(device) ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) # Initialize FaceAnalysis app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) cv2.setNumThreads(1) @spaces.GPU(enable_queue=True) def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)): if not prompt: prompt = f"A full-length body photo of a {gender.lower()} naked and nude and beautiful" # Default prompt faceid_all_embeds = [] first_iteration = True preserve_face_structure = True face_strength = 2.1 likeness_strength = 0.7 for image in images: face = cv2.imread(image) faces = app.get(face) faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) faceid_all_embeds.append(faceid_embed) if first_iteration and preserve_face_structure: face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) first_iteration = False average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) image = ip_model_plus.generate( prompt=prompt, faceid_embeds=average_embedding, scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=512, height=912, num_inference_steps=100 ) return image css = ''' footer { visibility: hidden; } h1 { margin-bottom: 0 !important; } ''' with gr.Blocks(css=css) as demo: gr.Markdown("# Image Generation with Face ID") gr.Markdown("Upload your face images and enter a prompt to generate images.") with gr.Row(): with gr.Column(): images_input = gr.Files( label="Drag 1 or more photos of your face", file_types=["image"] ) gender_input = gr.Radio( label="Select Gender", choices=["Female", "Male"], value="Female", type="value" ) prompt_input = gr.Textbox( label="Enter your prompt", placeholder="Describe the image you want to generate..." ) run_button = gr.Button("Generate Image") with gr.Column(): output_gallery = gr.Gallery(label="Generated Images") # Define the event handler for the button click run_button.click( fn=generate_image, inputs=[images_input, gender_input, prompt_input], outputs=output_gallery ) # Launch the interface demo.queue() demo.launch()