Spaces:
Building
Building
File size: 22,399 Bytes
9203871 372c3a2 69fda0a 92d447e 184478e e12dec3 184478e cebb472 e12dec3 184478e 372c3a2 184478e 372c3a2 184478e cebb472 73f6447 cebb472 73f6447 cebb472 73f6447 cebb472 372c3a2 b0e155b 372c3a2 cebb472 372c3a2 b0e155b cebb472 372c3a2 cebb472 c73bf71 cebb472 e12dec3 372c3a2 e12dec3 cebb472 73f6447 cebb472 73f6447 e12dec3 372c3a2 e12dec3 cebb472 e12dec3 372c3a2 e12dec3 69fda0a c4a9537 184478e 372c3a2 c4a9537 b0e155b c4a9537 372c3a2 184478e c4a9537 184478e c4a9537 184478e 372c3a2 b0e155b 372c3a2 c4a9537 184478e c4a9537 b0e155b c4a9537 184478e 372c3a2 b0e155b 372c3a2 184478e b0e155b cebb472 372c3a2 cebb472 372c3a2 b0e155b cebb472 372c3a2 c4a9537 372c3a2 c4a9537 372c3a2 c4a9537 372c3a2 c4a9537 372c3a2 c4a9537 372c3a2 b0e155b 372c3a2 b0e155b 372c3a2 b0e155b 372c3a2 c4a9537 372c3a2 c4a9537 b0e155b c4a9537 372c3a2 b0e155b c4a9537 b0e155b 372c3a2 c4a9537 372c3a2 c4a9537 b0e155b c4a9537 372c3a2 c4a9537 184478e 92d447e 9203871 92d447e e42012b 9203871 c73bf71 9203871 ae1872f 9203871 69fda0a 9203871 372c3a2 9203871 ae1872f 9203871 69fda0a 9203871 372c3a2 9203871 69fda0a 9203871 69fda0a 9203871 69fda0a 9203871 69fda0a 9203871 69fda0a 9203871 69fda0a 372c3a2 69fda0a e082c18 69fda0a 9203871 bb4b5d3 184478e e12dec3 dffde46 372c3a2 c4a9537 372c3a2 e12dec3 372c3a2 c4a9537 184478e c73bf71 184478e 372c3a2 184478e c73bf71 184478e 372c3a2 184478e 5c27f2d e04ae8a 4cdf037 c73bf71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import gradio as gr
import requests
import json
import os
from datetime import datetime, timedelta
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from openai import OpenAI
from bs4 import BeautifulSoup
import re
import pathlib
import sqlite3
import pytz
# ํ๊ตญ ๊ธฐ์
๋ฆฌ์คํธ
KOREAN_COMPANIES = [
"NVIDIA",
"ALPHABET",
"APPLE",
"TESLA",
"AMAZON",
"MICROSOFT",
"META",
"INTEL",
"SAMSUNG",
"HYNIX",
"BITCOIN",
"crypto",
"stock",
"Economics",
"Finance",
"investing"
]
def convert_to_seoul_time(timestamp_str):
try:
dt = datetime.strptime(timestamp_str, '%Y-%m-%d %H:%M:%S')
seoul_tz = pytz.timezone('Asia/Seoul')
seoul_time = seoul_tz.localize(dt)
return seoul_time.strftime('%Y-%m-%d %H:%M:%S KST')
except Exception as e:
print(f"์๊ฐ ๋ณํ ์ค๋ฅ: {str(e)}")
return timestamp_str
def analyze_sentiment_batch(articles, client):
"""
OpenAI API๋ฅผ ํตํด ๋ด์ค ๊ธฐ์ฌ๋ค์ ์ข
ํฉ ๊ฐ์ฑ ๋ถ์์ ์ํ
(๋ถ์ ๊ฒฐ๊ณผ๋ฅผ ํ๊ตญ์ด๋ก ์์ฑํ๋๋ก ์ ๋)
"""
try:
# ๋ชจ๋ ๊ธฐ์ฌ์ ์ ๋ชฉ๊ณผ ๋ด์ฉ์ ํ๋์ ํ
์คํธ๋ก ๊ฒฐํฉ
combined_text = "\n\n".join([
f"์ ๋ชฉ: {article.get('title', '')}\n๋ด์ฉ: {article.get('snippet', '')}"
for article in articles
])
# ํ๊ตญ์ด ์์ฑ์ ์ ๋ํ๋ ๋ฌธ๊ตฌ ์ถ๊ฐ
prompt = f"""๋ค์ ๋ด์ค ๋ชจ์์ ๋ํด ์ ๋ฐ์ ์ธ ๊ฐ์ฑ ๋ถ์์ ์ํํ์ธ์. (ํ๊ตญ์ด๋ก ์์ฑํ์ธ์)
๋ด์ค ๋ด์ฉ:
{combined_text}
๋ค์ ํ์์ผ๋ก ๋ถ์ํด์ฃผ์ธ์:
1. ์ ๋ฐ์ ๊ฐ์ฑ: [๊ธ์ /๋ถ์ /์ค๋ฆฝ]
2. ์ฃผ์ ๊ธ์ ์ ์์:
- [ํญ๋ชฉ1]
- [ํญ๋ชฉ2]
3. ์ฃผ์ ๋ถ์ ์ ์์:
- [ํญ๋ชฉ1]
- [ํญ๋ชฉ2]
4. ์ข
ํฉ ํ๊ฐ: [์์ธ ์ค๋ช
]
"""
response = client.chat.completions.create(
model="CohereForAI/c4ai-command-r-plus-08-2024",
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=1000
)
return response.choices[0].message.content
except Exception as e:
return f"๊ฐ์ฑ ๋ถ์ ์คํจ: {str(e)}"
# DB ์ด๊ธฐํ ํจ์
def init_db():
db_path = pathlib.Path("search_results.db")
conn = sqlite3.connect(db_path)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS searches
(id INTEGER PRIMARY KEY AUTOINCREMENT,
keyword TEXT,
country TEXT,
results TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
def save_to_db(keyword, country, results):
"""
ํน์ (keyword, country) ์กฐํฉ์ ๋ํ ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ DB์ ์ ์ฅ
"""
conn = sqlite3.connect("search_results.db")
c = conn.cursor()
seoul_tz = pytz.timezone('Asia/Seoul')
now = datetime.now(seoul_tz)
timestamp = now.strftime('%Y-%m-%d %H:%M:%S')
c.execute("""INSERT INTO searches
(keyword, country, results, timestamp)
VALUES (?, ?, ?, ?)""",
(keyword, country, json.dumps(results), timestamp))
conn.commit()
conn.close()
def load_from_db(keyword, country):
"""
ํน์ (keyword, country) ์กฐํฉ์ ๋ํ ๊ฐ์ฅ ์ต๊ทผ ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ DB์์ ๋ถ๋ฌ์ค๊ธฐ
"""
conn = sqlite3.connect("search_results.db")
c = conn.cursor()
c.execute("SELECT results, timestamp FROM searches WHERE keyword=? AND country=? ORDER BY timestamp DESC LIMIT 1",
(keyword, country))
result = c.fetchone()
conn.close()
if result:
return json.loads(result[0]), convert_to_seoul_time(result[1])
return None, None
def display_results(articles):
"""
๋ด์ค ๊ธฐ์ฌ ๋ชฉ๋ก์ Markdown ๋ฌธ์์ด๋ก ๋ณํํ์ฌ ๋ฐํ
"""
output = ""
for idx, article in enumerate(articles, 1):
output += f"### {idx}. {article['title']}\n"
output += f"์ถ์ฒ: {article['channel']}\n"
output += f"์๊ฐ: {article['time']}\n"
output += f"๋งํฌ: {article['link']}\n"
output += f"์์ฝ: {article['snippet']}\n\n"
return output
########################################
# 1) ๊ฒ์ ์ => ๊ธฐ์ฌ + ๋ถ์ ๋์ ์ถ๋ ฅ, DB ์ ์ฅ
########################################
def search_company(company):
"""
๋จ์ผ ๊ธฐ์
(๋๋ ํค์๋)์ ๋ํด ๋ฏธ๊ตญ ๋ด์ค ๊ฒ์ ํ,
๊ธฐ์ฌ ๋ชฉ๋ก + ๊ฐ์ฑ ๋ถ์ ๋ณด๊ณ ๋ฅผ ํจ๊ป ์ถ๋ ฅ
=> { "articles": [...], "analysis": ... } ํํ๋ก DB์ ์ ์ฅ
"""
error_message, articles = serphouse_search(company, "United States")
if not error_message and articles:
analysis = analyze_sentiment_batch(articles, client)
store_dict = {
"articles": articles,
"analysis": analysis
}
save_to_db(company, "United States", store_dict)
output = display_results(articles)
output += f"\n\n### ๋ถ์ ๋ณด๊ณ \n{analysis}\n"
return output
return f"{company}์ ๋ํ ๊ฒ์ ๊ฒฐ๊ณผ๊ฐ ์์ต๋๋ค."
########################################
# 2) ์ถ๋ ฅ ์ => DB์ ์ ์ฅ๋ ๊ธฐ์ฌ + ๋ถ์ ํจ๊ป ์ถ๋ ฅ
########################################
def load_company(company):
"""
DB์์ (keyword=company, country=United States)์ ํด๋นํ๋
๊ธฐ์ฌ ๋ชฉ๋ก + ๋ถ์ ๋ณด๊ณ ๋ฅผ ํจ๊ป ์ถ๋ ฅ
"""
data, timestamp = load_from_db(company, "United States")
if data:
articles = data.get("articles", [])
analysis = data.get("analysis", "")
output = f"### {company} ๊ฒ์ ๊ฒฐ๊ณผ\n์ ์ฅ ์๊ฐ: {timestamp}\n\n"
output += display_results(articles)
output += f"\n\n### ๋ถ์ ๋ณด๊ณ \n{analysis}\n"
return output
return f"{company}์ ๋ํ ์ ์ฅ๋ ๊ฒฐ๊ณผ๊ฐ ์์ต๋๋ค."
########################################
# 3) ๋ฆฌํฌํธ: "EarnBOT ๋ถ์ ๋ฆฌํฌํธ"
########################################
def show_stats():
"""
KOREAN_COMPANIES ๋ด ๋ชจ๋ ๊ธฐ์
์
- ์ต์ DB ์ ์ฅ ์๊ฐ
- ๊ธฐ์ฌ ์
- ๊ฐ์ฑ ๋ถ์ ๊ฒฐ๊ณผ
๋ฑ์ ๋ณ๋ ฌ๋ก ์กฐํ, ๋ณด๊ณ ์ ํํ๋ก ๋ฐํ
"""
conn = sqlite3.connect("search_results.db")
c = conn.cursor()
output = "## EarnBOT ๋ถ์ ๋ฆฌํฌํธ\n\n"
data_list = []
for company in KOREAN_COMPANIES:
c.execute("""
SELECT results, timestamp
FROM searches
WHERE keyword = ?
ORDER BY timestamp DESC
LIMIT 1
""", (company,))
row = c.fetchone()
if row:
results_json, tstamp = row
data_list.append((company, tstamp, results_json))
conn.close()
def analyze_data(item):
comp, tstamp, results_json = item
data = json.loads(results_json)
articles = data.get("articles", [])
analysis = data.get("analysis", "")
count_articles = len(articles)
return (comp, tstamp, count_articles, analysis)
results_list = []
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(analyze_data, dl) for dl in data_list]
for future in as_completed(futures):
results_list.append(future.result())
for comp, tstamp, count, analysis in results_list:
seoul_time = convert_to_seoul_time(tstamp)
output += f"### {comp}\n"
output += f"- ๋ง์ง๋ง ์
๋ฐ์ดํธ: {seoul_time}\n"
output += f"- ์ ์ฅ๋ ๊ธฐ์ฌ ์: {count}๊ฑด\n\n"
if analysis:
output += "#### ๋ด์ค ๊ฐ์ฑ ๋ถ์\n"
output += f"{analysis}\n\n"
output += "---\n\n"
return output
def search_all_companies():
"""
๋ชจ๋ ๊ธฐ์
๊ฒ์ + ๋ถ์ -> DB ์ ์ฅ
"""
overall_result = "# [์ ์ฒด ๊ฒ์ ๊ฒฐ๊ณผ]\n\n"
def do_search(comp):
return comp, search_company(comp)
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(do_search, c) for c in KOREAN_COMPANIES]
for future in as_completed(futures):
comp, res_text = future.result()
overall_result += f"## {comp}\n"
overall_result += res_text + "\n\n"
return overall_result
def load_all_companies():
"""
๋ชจ๋ ๊ธฐ์
์ ๋ํ DB ์ ์ฅ๋ ๊ธฐ์ฌ + ๋ถ์ ์ถ๋ ฅ
"""
overall_result = "# [์ ์ฒด ์ถ๋ ฅ ๊ฒฐ๊ณผ]\n\n"
for comp in KOREAN_COMPANIES:
overall_result += f"## {comp}\n"
overall_result += load_company(comp)
overall_result += "\n"
return overall_result
def full_summary_report():
"""
1) ๋ชจ๋ ๊ธฐ์
๋ณ๋ ฌ ๊ฒ์+๋ถ์ => DB ์ ์ฅ
2) DB์์ ๋ก๋ => ๊ธฐ์ฌ + ๋ถ์ ์ถ๋ ฅ
3) EarnBOT ๋ถ์ ๋ฆฌํฌํธ
"""
search_result_text = search_all_companies()
load_result_text = load_all_companies()
stats_text = show_stats()
combined_report = (
"# ์ ์ฒด ๋ถ์ ๋ณด๊ณ ์์ฝ\n\n"
"์๋ ์์๋ก ์คํ๋์์ต๋๋ค:\n"
"1. ๋ชจ๋ ์ข
๋ชฉ ๊ฒ์(๋ณ๋ ฌ) + ๋ถ์ => 2. ๋ชจ๋ ์ข
๋ชฉ DB ๊ฒฐ๊ณผ ์ถ๋ ฅ => 3. ์ ์ฒด ๊ฐ์ฑ ๋ถ์ ํต๊ณ\n\n"
f"{search_result_text}\n\n"
f"{load_result_text}\n\n"
"## [์ ์ฒด ๊ฐ์ฑ ๋ถ์ ํต๊ณ]\n\n"
f"{stats_text}"
)
return combined_report
########################################
# ์ฌ์ฉ์ ์์ ๊ฒ์
########################################
def search_custom(query, country):
"""
(query, country)์ ๋ํด
1) ๊ฒ์ + ๋ถ์ => DB ์ ์ฅ
2) DB ๋ก๋ => ๊ธฐ์ฌ+๋ถ์ ์ถ๋ ฅ
"""
error_message, articles = serphouse_search(query, country)
if error_message:
return f"์ค๋ฅ ๋ฐ์: {error_message}"
if not articles:
return "๊ฒ์ ๊ฒฐ๊ณผ๊ฐ ์์ต๋๋ค."
analysis = analyze_sentiment_batch(articles, client)
save_data = {
"articles": articles,
"analysis": analysis
}
save_to_db(query, country, save_data)
loaded_data, timestamp = load_from_db(query, country)
if not loaded_data:
return "DB์์ ๋ก๋ ์คํจ"
arts = loaded_data.get("articles", [])
analy = loaded_data.get("analysis", "")
out = f"## [์ฌ์ฉ์ ์์ ๊ฒ์ ๊ฒฐ๊ณผ]\n\n"
out += f"**ํค์๋**: {query}\n\n"
out += f"**๊ตญ๊ฐ**: {country}\n\n"
out += f"**์ ์ฅ ์๊ฐ**: {timestamp}\n\n"
out += display_results(arts)
out += f"### ๋ด์ค ๊ฐ์ฑ ๋ถ์\n{analy}\n"
return out
ACCESS_TOKEN = os.getenv("HF_TOKEN")
if not ACCESS_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
API_KEY = os.getenv("SERPHOUSE_API_KEY")
COUNTRY_LANGUAGES = {
"United States": "en",
"KOREA": "ko",
"United Kingdom": "en",
"Taiwan": "zh-TW",
"Canada": "en",
"Australia": "en",
"Germany": "de",
"France": "fr",
"Japan": "ja",
"China": "zh",
"India": "hi",
"Brazil": "pt",
"Mexico": "es",
"Russia": "ru",
"Italy": "it",
"Spain": "es",
"Netherlands": "nl",
"Singapore": "en",
"Hong Kong": "zh-HK",
"Indonesia": "id",
"Malaysia": "ms",
"Philippines": "tl",
"Thailand": "th",
"Vietnam": "vi",
"Belgium": "nl",
"Denmark": "da",
"Finland": "fi",
"Ireland": "en",
"Norway": "no",
"Poland": "pl",
"Sweden": "sv",
"Switzerland": "de",
"Austria": "de",
"Czech Republic": "cs",
"Greece": "el",
"Hungary": "hu",
"Portugal": "pt",
"Romania": "ro",
"Turkey": "tr",
"Israel": "he",
"Saudi Arabia": "ar",
"United Arab Emirates": "ar",
"South Africa": "en",
"Argentina": "es",
"Chile": "es",
"Colombia": "es",
"Peru": "es",
"Venezuela": "es",
"New Zealand": "en",
"Bangladesh": "bn",
"Pakistan": "ur",
"Egypt": "ar",
"Morocco": "ar",
"Nigeria": "en",
"Kenya": "sw",
"Ukraine": "uk",
"Croatia": "hr",
"Slovakia": "sk",
"Bulgaria": "bg",
"Serbia": "sr",
"Estonia": "et",
"Latvia": "lv",
"Lithuania": "lt",
"Slovenia": "sl",
"Luxembourg": "Luxembourg",
"Malta": "Malta",
"Cyprus": "Cyprus",
"Iceland": "Iceland"
}
COUNTRY_LOCATIONS = {
"United States": "United States",
"KOREA": "kr",
"United Kingdom": "United Kingdom",
"Taiwan": "Taiwan",
"Canada": "Canada",
"Australia": "Australia",
"Germany": "Germany",
"France": "France",
"Japan": "Japan",
"China": "China",
"India": "India",
"Brazil": "Brazil",
"Mexico": "Mexico",
"Russia": "Russia",
"Italy": "Italy",
"Spain": "Spain",
"Netherlands": "Netherlands",
"Singapore": "Singapore",
"Hong Kong": "Hong Kong",
"Indonesia": "Indonesia",
"Malaysia": "Malaysia",
"Philippines": "Philippines",
"Thailand": "Thailand",
"Vietnam": "Vietnam",
"Belgium": "Belgium",
"Denmark": "Denmark",
"Finland": "Finland",
"Ireland": "Ireland",
"Norway": "Norway",
"Poland": "Poland",
"Sweden": "Sweden",
"Switzerland": "Switzerland",
"Austria": "Austria",
"Czech Republic": "Czech Republic",
"Greece": "Greece",
"Hungary": "Hungary",
"Portugal": "Portugal",
"Romania": "Romania",
"Turkey": "Turkey",
"Israel": "Israel",
"Saudi Arabia": "Saudi Arabia",
"United Arab Emirates": "United Arab Emirates",
"South Africa": "South Africa",
"Argentina": "Argentina",
"Chile": "Chile",
"Colombia": "Colombia",
"Peru": "Peru",
"Venezuela": "Venezuela",
"New Zealand": "New Zealand",
"Bangladesh": "Bangladesh",
"Pakistan": "Pakistan",
"Egypt": "Egypt",
"Morocco": "Morocco",
"Nigeria": "Nigeria",
"Kenya": "Kenya",
"Ukraine": "Ukraine",
"Croatia": "Croatia",
"Slovakia": "Slovakia",
"Bulgaria": "Bulgaria",
"Serbia": "Serbia",
"Estonia": "et",
"Latvia": "lv",
"Lithuania": "lt",
"Slovenia": "sl",
"Luxembourg": "Luxembourg",
"Malta": "Malta",
"Cyprus": "Cyprus",
"Iceland": "Iceland"
}
css = """
/* ์ ์ญ ์คํ์ผ */
footer {visibility: hidden;}
/* ๋ ์ด์์ ์ปจํ
์ด๋ */
#status_area {
background: rgba(255, 255, 255, 0.9);
padding: 15px;
border-bottom: 1px solid #ddd;
margin-bottom: 20px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
#results_area {
padding: 10px;
margin-top: 10px;
}
/* ํญ ์คํ์ผ */
.tabs {
border-bottom: 2px solid #ddd !important;
margin-bottom: 20px !important;
}
.tab-nav {
border-bottom: none !important;
margin-bottom: 0 !important;
}
.tab-nav button {
font-weight: bold !important;
padding: 10px 20px !important;
}
.tab-nav button.selected {
border-bottom: 2px solid #1f77b4 !important;
color: #1f77b4 !important;
}
/* ์ํ ๋ฉ์์ง */
#status_area .markdown-text {
font-size: 1.1em;
color: #2c3e50;
padding: 10px 0;
}
/* ๊ธฐ๋ณธ ์ปจํ
์ด๋ */
.group {
border: 1px solid #eee;
padding: 15px;
margin-bottom: 15px;
border-radius: 5px;
background: white;
}
/* ๋ฒํผ ์คํ์ผ */
.primary-btn {
background: #1f77b4 !important;
border: none !important;
}
/* ์
๋ ฅ ํ๋ */
.textbox {
border: 1px solid #ddd !important;
border-radius: 4px !important;
}
/* ํ๋ก๊ทธ๋ ์ค๋ฐ ์ปจํ
์ด๋ */
.progress-container {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 6px;
background: #e0e0e0;
z-index: 1000;
}
/* ํ๋ก๊ทธ๋ ์คbar */
.progress-bar {
height: 100%;
background: linear-gradient(90deg, #2196F3, #00BCD4);
box-shadow: 0 0 10px rgba(33, 150, 243, 0.5);
transition: width 0.3s ease;
animation: progress-glow 1.5s ease-in-out infinite;
}
/* ํ๋ก๊ทธ๋ ์ค ํ
์คํธ */
.progress-text {
position: fixed;
top: 8px;
left: 50%;
transform: translateX(-50%);
background: #333;
color: white;
padding: 4px 12px;
border-radius: 15px;
font-size: 14px;
z-index: 1001;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
}
/* ํ๋ก๊ทธ๋ ์ค๋ฐ ์ ๋๋ฉ์ด์
*/
@keyframes progress-glow {
0% {
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
}
50% {
box-shadow: 0 0 20px rgba(33, 150, 243, 0.8);
}
100% {
box-shadow: 0 0 5px rgba(33, 150, 243, 0.5);
}
}
/* ๋ฐ์ํ ๋์์ธ */
@media (max-width: 768px) {
.group {
padding: 10px;
margin-bottom: 15px;
}
.progress-text {
font-size: 12px;
padding: 3px 10px;
}
}
/* ๋ก๋ฉ ์ํ ํ์ ๊ฐ์ */
.loading {
opacity: 0.7;
pointer-events: none;
transition: opacity 0.3s ease;
}
/* ๊ฒฐ๊ณผ ์ปจํ
์ด๋ ์ ๋๋ฉ์ด์
*/
.group {
transition: all 0.3s ease;
opacity: 0;
transform: translateY(20px);
}
.group.visible {
opacity: 1;
transform: translateY(0);
}
/* Examples ์คํ์ผ๋ง */
.examples-table {
margin-top: 10px !important;
margin-bottom: 20px !important;
}
.examples-table button {
background-color: #f0f0f0 !important;
border: 1px solid #ddd !important;
border-radius: 4px !important;
padding: 5px 10px !important;
margin: 2px !important;
transition: all 0.3s ease !important;
}
.examples-table button:hover {
background-color: #e0e0e0 !important;
transform: translateY(-1px) !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
}
.examples-table .label {
font-weight: bold !important;
color: #444 !important;
margin-bottom: 5px !important;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="NewsAI ์๋น์ค") as iface:
init_db()
with gr.Tabs():
# ์ฒซ ๋ฒ์งธ ํญ
with gr.Tab("Earnbot"):
gr.Markdown("## EarnBot: ๊ธ๋ก๋ฒ ๋น
ํ
ํฌ ๊ธฐ์
๋ฐ ํฌ์ ์ ๋ง AI ์๋ ๋ถ์")
gr.Markdown(" * '์ ์ฒด ๋ถ์ ๋ณด๊ณ ์์ฝ' ํด๋ฆญ ์ ์ ์ฒด ์๋ ๋ณด๊ณ ์์ฑ.\n * ์๋ ๊ฐ๋ณ ์ข
๋ชฉ์ '๊ฒ์(DB ์๋ ์ ์ฅ)'๊ณผ '์ถ๋ ฅ(DB ์๋ ํธ์ถ)'๋ ๊ฐ๋ฅ.\n * ์ถ๊ฐ๋ก, ์ํ๋ ์์ ํค์๋ ๋ฐ ๊ตญ๊ฐ๋ก ๊ฒ์/๋ถ์ํ ์๋ ์์ต๋๋ค.")
# (์ฌ์ฉ์ ์์ ๊ฒ์ ์น์
)
with gr.Group():
gr.Markdown("### ์ฌ์ฉ์ ์์ ๊ฒ์")
with gr.Row():
with gr.Column():
user_input = gr.Textbox(
label="๊ฒ์์ด ์
๋ ฅ",
placeholder="์) Apple, Samsung ๋ฑ ์์ ๋กญ๊ฒ"
)
with gr.Column():
country_selection = gr.Dropdown(
choices=list(COUNTRY_LOCATIONS.keys()),
value="United States",
label="๊ตญ๊ฐ ์ ํ"
)
with gr.Column():
custom_search_btn = gr.Button("์คํ", variant="primary")
custom_search_output = gr.Markdown()
custom_search_btn.click(
fn=search_custom,
inputs=[user_input, country_selection],
outputs=custom_search_output
)
# ์ ์ฒด ๋ถ์ ๋ณด๊ณ ์์ฝ ๋ฒํผ
with gr.Row():
full_report_btn = gr.Button("์ ์ฒด ๋ถ์ ๋ณด๊ณ ์์ฝ", variant="primary")
full_report_display = gr.Markdown()
full_report_btn.click(
fn=full_summary_report,
outputs=full_report_display
)
# ์ง์ ๋ ๋ฆฌ์คํธ (KOREAN_COMPANIES) ๊ฐ๋ณ ๊ธฐ์
๊ฒ์/์ถ๋ ฅ
with gr.Column():
for i in range(0, len(KOREAN_COMPANIES), 2):
with gr.Row():
# ์ผ์ชฝ ์ด
with gr.Column():
company = KOREAN_COMPANIES[i]
with gr.Group():
gr.Markdown(f"### {company}")
with gr.Row():
search_btn = gr.Button("๊ฒ์", variant="primary")
load_btn = gr.Button("์ถ๋ ฅ", variant="secondary")
result_display = gr.Markdown()
search_btn.click(
fn=lambda c=company: search_company(c),
outputs=result_display
)
load_btn.click(
fn=lambda c=company: load_company(c),
outputs=result_display
)
# ์ค๋ฅธ์ชฝ ์ด
if i + 1 < len(KOREAN_COMPANIES):
with gr.Column():
company = KOREAN_COMPANIES[i + 1]
with gr.Group():
gr.Markdown(f"### {company}")
with gr.Row():
search_btn = gr.Button("๊ฒ์", variant="primary")
load_btn = gr.Button("์ถ๋ ฅ", variant="secondary")
result_display = gr.Markdown()
search_btn.click(
fn=lambda c=company: search_company(c),
outputs=result_display
)
load_btn.click(
fn=lambda c=company: load_company(c),
outputs=result_display
)
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
ssl_verify=False,
show_error=True
)
|