|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
from io import BytesIO |
|
|
|
def convert_parquet_to_csv(parquet_file=None, parquet_url=None): |
|
|
|
if parquet_file is not None: |
|
df = pd.read_parquet(parquet_file.name) |
|
elif parquet_url is not None: |
|
response = requests.get(parquet_url) |
|
response.raise_for_status() |
|
df = pd.read_parquet(BytesIO(response.content)) |
|
else: |
|
raise ValueError("Either parquet_file or parquet_url must be provided") |
|
|
|
|
|
for col in df.select_dtypes(include=["object"]).columns: |
|
df[col] = df[col].apply( |
|
lambda x: x.encode("utf-8", errors="replace").decode("utf-8", errors="replace") |
|
if isinstance(x, str) else x |
|
) |
|
|
|
|
|
csv_data = df.to_csv(index=False) |
|
|
|
|
|
output_file_path = "output.csv" |
|
with open(output_file_path, "w", encoding="utf-8") as f: |
|
f.write(csv_data) |
|
|
|
return output_file_path |
|
|
|
demo = gr.Interface( |
|
fn=convert_parquet_to_csv, |
|
inputs=[gr.File(label="Parquet File"), gr.Textbox(label="Parquet File URL")], |
|
outputs=[gr.File(label="CSV Output")], |
|
title="Parquet to CSV Converter", |
|
description="Convert a Parquet file to CSV format from a downloadable link or file upload" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|