File size: 37,881 Bytes
59a9ccf
b122ddc
 
5bb223e
 
 
 
 
 
 
 
a372d2a
 
dadf5f2
8dd2959
 
 
 
 
 
 
 
 
 
 
59a9ccf
b122ddc
 
 
 
 
 
 
 
 
 
7714bff
 
1b950bb
b122ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b950bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a9ccf
 
 
 
8a6c540
 
dadf5f2
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
59a9ccf
 
 
 
8a6c540
 
 
 
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5d1fc
59a9ccf
 
 
 
 
dadf5f2
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
bcfc971
 
 
 
 
 
a71505c
8a6c540
a71505c
 
 
8a6c540
a71505c
 
 
 
8a6c540
a71505c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
a71505c
bcfc971
 
8a6c540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcfc971
 
 
 
 
 
 
8a6c540
bcfc971
 
 
 
 
 
dadf5f2
 
 
 
 
 
 
 
 
 
 
59a9ccf
535c8ca
 
 
 
59a9ccf
 
535c8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
e31033d
dadf5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
dadf5f2
 
 
 
59a9ccf
dadf5f2
 
 
 
 
 
 
 
 
59a9ccf
e31033d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadf5f2
e31033d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
e31033d
c1d5993
1b950bb
 
 
 
b122ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b950bb
 
c1d5993
380523e
 
 
 
 
 
c1d5993
380523e
 
 
 
 
c1d5993
 
 
 
380523e
 
 
 
 
 
 
 
 
 
 
 
c1d5993
 
380523e
 
 
 
 
 
 
 
 
 
 
 
c1d5993
 
380523e
 
 
 
 
 
c1d5993
 
 
380523e
 
 
 
 
 
c1d5993
 
 
 
 
 
380523e
c1d5993
380523e
 
 
 
 
c1d5993
380523e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1d5993
380523e
 
 
 
 
 
c1d5993
 
380523e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcfc971
36ba1c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebc63d
1b950bb
36ba1c1
380523e
 
 
 
 
c1d5993
5eaa79d
380523e
 
 
5eaa79d
380523e
 
5eaa79d
380523e
 
 
5eaa79d
380523e
c1d5993
 
380523e
 
 
 
 
 
 
 
 
 
 
c1d5993
380523e
 
cebc63d
380523e
 
 
 
 
 
 
c1d5993
5eaa79d
 
 
 
 
 
380523e
 
 
 
1b950bb
c1d5993
1b950bb
 
c1d5993
 
 
1b950bb
380523e
 
 
 
 
 
 
 
c1d5993
 
cebc63d
1b950bb
 
 
 
 
e989c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
1b950bb
 
 
 
bcfc971
e989c1c
1b950bb
 
 
 
bcfc971
 
1b950bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e989c1c
1b950bb
 
 
 
 
c1d5993
 
b122ddc
 
 
 
 
 
 
 
 
 
 
1b950bb
c1d5993
1b950bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
import os,sys
from openai import OpenAI
import gradio as gr

# install required packages
os.system('pip install -q plotly')
os.system('pip install -q matplotlib')
os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html')
os.environ["DGLBACKEND"] = "pytorch"
print('Modules installed')

# ํ•„์ˆ˜ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ž„ํฌํŠธ
from datasets import load_dataset
import plotly.graph_objects as go
import numpy as np
import py3Dmol
from io import StringIO
import json
import secrets
import copy
import matplotlib.pyplot as plt
from utils.sampler import HuggingFace_sampler
from utils.parsers_inference import parse_pdb
from model.util import writepdb
from utils.inpainting_util import *

# Hugging Face ํ† ํฐ ์„ค์ •
ACCESS_TOKEN = os.getenv("HF_TOKEN")
if not ACCESS_TOKEN:
    raise ValueError("HF_TOKEN not found in environment variables")

# OpenAI ํด๋ผ์ด์–ธํŠธ ์„ค์ • (Hugging Face ์—”๋“œํฌ์ธํŠธ ์‚ฌ์šฉ)
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

# ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ
ds = load_dataset("lamm-mit/protein_secondary_structure_from_PDB",
                 token=ACCESS_TOKEN)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    
    for message in client.chat.completions.create(
        model="CohereForAI/c4ai-command-r-plus-08-2024",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

# ์ฑ—๋ด‡ ๋ฐ ๋‹จ๋ฐฑ์งˆ ์ƒ์„ฑ ๊ด€๋ จ ํ•จ์ˆ˜๋“ค
def process_chat(message, history):
    messages = [{"role": "user", "content": message}]
    response = pipe(messages)[0]['generated_text']
    
    if any(keyword in message.lower() for keyword in ['protein', 'generate', '๋‹จ๋ฐฑ์งˆ', '์ƒ์„ฑ']):
        relevant_data = search_protein_data(message)
        params = extract_parameters(response, relevant_data)
        protein_result = generate_protein(params)
        explanation = generate_explanation(protein_result, params)
        return response + "\n\n" + explanation
    
    return response

def search_protein_data(query):
    relevant_entries = []
    for entry in ds['train']:
        if any(keyword in entry['sequence'].lower() for keyword in query.lower().split()):
            relevant_entries.append(entry)
    return relevant_entries

def extract_parameters(llm_response, dataset_info):
    params = {
        'sequence_length': 100,
        'helix_bias': 0.02,
        'strand_bias': 0.02,
        'loop_bias': 0.1,
        'hydrophobic_target_score': 0
    }
    return params

def generate_explanation(result, params):
    explanation = f"""
    ์ƒ์„ฑ๋œ ๋‹จ๋ฐฑ์งˆ ๋ถ„์„:
    - ๊ธธ์ด: {params['sequence_length']} ์•„๋ฏธ๋…ธ์‚ฐ
    - ๊ตฌ์กฐ์  ํŠน์ง•:
        * ์•ŒํŒŒ ๋‚˜์„  ๋น„์œจ: {params['helix_bias']*100}%
        * ๋ฒ ํƒ€ ์‹œํŠธ ๋น„์œจ: {params['strand_bias']*100}%
        * ๋ฃจํ”„ ๊ตฌ์กฐ ๋น„์œจ: {params['loop_bias']*100}%
    - ํŠน์ˆ˜ ๊ธฐ๋Šฅ: {result.get('special_features', '์—†์Œ')}
    """
    return explanation


def protein_diffusion_model(sequence, seq_len, helix_bias, strand_bias, loop_bias, 
                    secondary_structure, aa_bias, aa_bias_potential, 
                    num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
                    contigs, pssm, seq_mask, str_mask, rewrite_pdb):

    
    dssp_checkpoint = './SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'
    og_checkpoint = './SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'

    model_args = copy.deepcopy(args)

    # make sampler
    S = HuggingFace_sampler(args=model_args)

    # get random prefix 
    S.out_prefix = './tmp/'+secrets.token_hex(nbytes=10).upper()

    # set args
    S.args['checkpoint'] = None
    S.args['dump_trb'] = False
    S.args['dump_args'] = True
    S.args['save_best_plddt'] = True
    S.args['T'] = 20
    S.args['strand_bias'] = 0.0
    S.args['loop_bias'] = 0.0
    S.args['helix_bias'] = 0.0
    S.args['potentials'] = None
    S.args['potential_scale'] = None
    S.args['aa_composition'] = None


    # get sequence if entered and make sure all chars are valid
    alt_aa_dict = {'B':['D','N'],'J':['I','L'],'U':['C'],'Z':['E','Q'],'O':['K']}
    if sequence not in ['',None]:
        L = len(sequence)
        aa_seq = []
        for aa in sequence.upper():
            if aa in alt_aa_dict.keys():
                aa_seq.append(np.random.choice(alt_aa_dict[aa]))
            else:
                aa_seq.append(aa)

        S.args['sequence'] = aa_seq
    elif contigs not in ['',None]:
        S.args['contigs'] = [contigs]
    else:
        S.args['contigs'] = [f'{seq_len}']
        L = int(seq_len)
    
    print('DEBUG: ',rewrite_pdb)
    if rewrite_pdb not in ['',None]:
        S.args['pdb'] = rewrite_pdb.name

    if seq_mask not in ['',None]:
        S.args['inpaint_seq'] = [seq_mask]
    if str_mask not in ['',None]:
        S.args['inpaint_str'] = [str_mask]

    if secondary_structure in ['',None]:
        secondary_structure = None
    else:
        secondary_structure = ''.join(['E' if x == 'S' else x for x in secondary_structure])
        if L < len(secondary_structure):
            secondary_structure = secondary_structure[:len(sequence)]
        elif L == len(secondary_structure):
            pass
        else:
            dseq = L - len(secondary_structure)
            secondary_structure += secondary_structure[-1]*dseq
    

    # potentials
    potential_list = []
    potential_bias_list = []

    if aa_bias not in ['',None]:
        potential_list.append('aa_bias')
        S.args['aa_composition'] = aa_bias
        if aa_bias_potential in ['',None]:
            aa_bias_potential = 3
        potential_bias_list.append(str(aa_bias_potential))
    '''
    if target_charge not in ['',None]:
        potential_list.append('charge')
        if charge_potential in ['',None]:
            charge_potential = 1
        potential_bias_list.append(str(charge_potential))
        S.args['target_charge'] = float(target_charge)
        if target_ph in ['',None]:
            target_ph = 7.4
        S.args['target_pH'] = float(target_ph)
    '''
    
    if hydrophobic_target_score not in ['',None]:
        potential_list.append('hydrophobic')
        S.args['hydrophobic_score'] = float(hydrophobic_target_score)
        if hydrophobic_potential in ['',None]:
            hydrophobic_potential = 3
        potential_bias_list.append(str(hydrophobic_potential))
    
    if pssm not in ['',None]:
        potential_list.append('PSSM')
        potential_bias_list.append('5')
        S.args['PSSM'] = pssm.name
        

    if len(potential_list) > 0:
        S.args['potentials'] = ','.join(potential_list)
        S.args['potential_scale'] = ','.join(potential_bias_list)


    # normalise secondary_structure bias from range 0-0.3
    S.args['secondary_structure'] = secondary_structure
    S.args['helix_bias'] = helix_bias
    S.args['strand_bias'] = strand_bias
    S.args['loop_bias'] = loop_bias
    
    # set T
    if num_steps in ['',None]:
        S.args['T'] = 20
    else:
        S.args['T'] = int(num_steps)

    # noise
    if 'normal' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [0]
        S.args['sample_distribution_gmm_variances'] = [1]
    elif 'gmm2' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [-1,1]
        S.args['sample_distribution_gmm_variances'] = [1,1]
    elif 'gmm3' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [-1,0,1]
        S.args['sample_distribution_gmm_variances'] = [1,1,1]



    if secondary_structure not in ['',None] or helix_bias+strand_bias+loop_bias > 0:
        S.args['checkpoint'] = dssp_checkpoint
        S.args['d_t1d'] = 29
        print('using dssp checkpoint')
    else:
        S.args['checkpoint'] = og_checkpoint
        S.args['d_t1d'] = 24
        print('using og checkpoint')
    

    for k,v in S.args.items():
        print(f"{k} --> {v}")
    
    # init S
    S.model_init()
    S.diffuser_init()
    S.setup()

    # sampling loop
    plddt_data = []
    for j in range(S.max_t):
        print(f'on step {j}')
        output_seq, output_pdb, plddt = S.take_step_get_outputs(j)
        plddt_data.append(plddt)
        yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)
    
    output_seq, output_pdb, plddt = S.get_outputs()
 
    return output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)


def get_plddt_plot(plddt_data, max_t):
    x = [i+1 for i in range(len(plddt_data))]
    fig, ax = plt.subplots(figsize=(15,6))
    ax.plot(x,plddt_data,color='#661dbf', linewidth=3,marker='o')
    ax.set_xticks([i+1 for i in range(max_t)])
    ax.set_yticks([(i+1)/10 for i in range(10)])
    ax.set_ylim([0,1])
    ax.set_ylabel('model confidence (plddt)')
    ax.set_xlabel('diffusion steps (t)')
    return fig

def display_pdb(path_to_pdb):
    '''
        #function to display pdb in py3dmol
    '''
    pdb = open(path_to_pdb, "r").read()
    
    view = py3Dmol.view(width=500, height=500)
    view.addModel(pdb, "pdb")
    view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) 
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    print(view._make_html())
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""

'''
    return f"""<iframe  style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera; 
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
                            allow-scripts allow-same-origin allow-popups 
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
'''

def get_motif_preview(pdb_id, contigs):
    try:
        input_pdb = fetch_pdb(pdb_id=pdb_id.lower() if pdb_id else None)
        if input_pdb is None:
            return gr.HTML("PDB ID๋ฅผ ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”"), None
        
        parse = parse_pdb(input_pdb)
        output_name = input_pdb

        pdb = open(output_name, "r").read()
        view = py3Dmol.view(width=500, height=500)
        view.addModel(pdb, "pdb")

        if contigs in ['',0]:
            contigs = ['0']
        else:
            contigs = [contigs]

        print('DEBUG: ',contigs)
        
        pdb_map = get_mappings(ContigMap(parse,contigs))
        print('DEBUG: ',pdb_map)
        print('DEBUG: ',pdb_map['con_ref_idx0'])
        roi = [x[1]-1 for x in pdb_map['con_ref_pdb_idx']]

        colormap = {0:'#D3D3D3', 1:'#F74CFF'}
        colors = {i+1: colormap[1] if i in roi else colormap[0] for i in range(parse['xyz'].shape[0])}
        view.setStyle({"cartoon": {"colorscheme": {"prop": "resi", "map": colors}}})
        view.zoomTo()
        output = view._make_html().replace("'", '"')
        print(view._make_html())
        x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
        
        return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                                display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                                allow-scripts allow-same-origin allow-popups
                                allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                                allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", output_name

    except Exception as e:
        return gr.HTML(f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"), None

def fetch_pdb(pdb_id=None):
    if pdb_id is None or pdb_id == "":
        return None
    else:
        os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_id}.pdb")
        return f"{pdb_id}.pdb"

# MSA AND PSSM GUIDANCE
def save_pssm(file_upload):
    filename = file_upload.name
    orig_name = file_upload.orig_name
    if filename.split('.')[-1] in ['fasta', 'a3m']:
        return msa_to_pssm(file_upload)
    return filename

def msa_to_pssm(msa_file):
    # Define the lookup table for converting amino acids to indices
    aa_to_index = {'A': 0, 'R': 1, 'N': 2, 'D': 3, 'C': 4, 'Q': 5, 'E': 6, 'G': 7, 'H': 8, 'I': 9, 'L': 10,
                'K': 11, 'M': 12, 'F': 13, 'P': 14, 'S': 15, 'T': 16, 'W': 17, 'Y': 18, 'V': 19, 'X': 20, '-': 21}
    # Open the FASTA file and read the sequences
    records = list(SeqIO.parse(msa_file.name, "fasta"))

    assert len(records) >= 1, "MSA must contain more than one protein sequecne."

    first_seq = str(records[0].seq)
    aligned_seqs = [first_seq]
    # print(aligned_seqs)
    # Perform sequence alignment using the Needleman-Wunsch algorithm
    aligner = Align.PairwiseAligner()
    aligner.open_gap_score = -0.7
    aligner.extend_gap_score = -0.3
    for record in records[1:]:
        alignment = aligner.align(first_seq, str(record.seq))[0]
        alignment = alignment.format().split("\n")
        al1 = alignment[0]
        al2 = alignment[2]
        al1_fin = ""
        al2_fin = ""
        percent_gap = al2.count('-')/ len(al2)
        if percent_gap > 0.4:
            continue
        for i in range(len(al1)):
            if al1[i] != '-':
                al1_fin += al1[i]
                al2_fin += al2[i]
        aligned_seqs.append(str(al2_fin))
    # Get the length of the aligned sequences
    aligned_seq_length = len(first_seq)
    # Initialize the position scoring matrix
    matrix = np.zeros((22, aligned_seq_length))
    # Iterate through the aligned sequences and count the amino acids at each position
    for seq in aligned_seqs:
        #print(seq)
        for i in range(aligned_seq_length):
            if i == len(seq):
                break
            amino_acid = seq[i]
            if amino_acid.upper() not in aa_to_index.keys():
                continue
            else:
                aa_index = aa_to_index[amino_acid.upper()]
            matrix[aa_index, i] += 1
    # Normalize the counts to get the frequency of each amino acid at each position
    matrix /= len(aligned_seqs)
    print(len(aligned_seqs))
    matrix[20:,]=0

    outdir = ".".join(msa_file.name.split('.')[:-1]) + ".csv"
    np.savetxt(outdir, matrix[:21,:].T, delimiter=",")
    return outdir

def get_pssm(fasta_msa, input_pssm):
    try:
        if input_pssm is not None:
            outdir = input_pssm.name
        elif fasta_msa is not None:
            outdir = save_pssm(fasta_msa)
        else:
            return gr.Plot(label="ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•ด์ฃผ์„ธ์š”"), None

        pssm = np.loadtxt(outdir, delimiter=",", dtype=float)
        fig, ax = plt.subplots(figsize=(15,6))
        plt.imshow(torch.permute(torch.tensor(pssm),(1,0)))
        return fig, outdir
    except Exception as e:
        return gr.Plot(label=f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"), None

# ํžˆ์–ด๋กœ ๋Šฅ๋ ฅ์น˜ ๊ณ„์‚ฐ ํ•จ์ˆ˜ ์ถ”๊ฐ€
def calculate_hero_stats(helix_bias, strand_bias, loop_bias, hydrophobic_score):
    stats = {
        'strength': strand_bias * 20,  # ๋ฒ ํƒ€์‹œํŠธ ๊ตฌ์กฐ ๊ธฐ๋ฐ˜
        'flexibility': helix_bias * 20, # ์•ŒํŒŒํ—ฌ๋ฆญ์Šค ๊ตฌ์กฐ ๊ธฐ๋ฐ˜
        'speed': loop_bias * 5,        # ๋ฃจํ”„ ๊ตฌ์กฐ ๊ธฐ๋ฐ˜
        'defense': abs(hydrophobic_score) if hydrophobic_score else 0
    }
    return stats

def toggle_seq_input(choice):
    if choice == "์ž๋™ ์„ค๊ณ„":
        return gr.update(visible=True), gr.update(visible=False)
    else:  # "์ง์ ‘ ์ž…๋ ฅ"
        return gr.update(visible=False), gr.update(visible=True)

def toggle_secondary_structure(choice):
    if choice == "์Šฌ๋ผ์ด๋”๋กœ ์„ค์ •":
        return (
            gr.update(visible=True),  # helix_bias
            gr.update(visible=True),  # strand_bias
            gr.update(visible=True),  # loop_bias
            gr.update(visible=False)  # secondary_structure
        )
    else:  # "์ง์ ‘ ์ž…๋ ฅ"
        return (
            gr.update(visible=False),  # helix_bias
            gr.update(visible=False),  # strand_bias
            gr.update(visible=False),  # loop_bias
            gr.update(visible=True)   # secondary_structure
        )


def create_radar_chart(stats):
    # ๋ ˆ์ด๋” ์ฐจํŠธ ์ƒ์„ฑ ๋กœ์ง
    categories = list(stats.keys())
    values = list(stats.values())
    
    fig = go.Figure(data=go.Scatterpolar(
        r=values,
        theta=categories,
        fill='toself'
    ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 1]
            )),
        showlegend=False
    )
    
    return fig

def generate_hero_description(name, stats, abilities):
    # ํžˆ์–ด๋กœ ์„ค๋ช… ์ƒ์„ฑ ๋กœ์ง
    description = f"""
    ํžˆ์–ด๋กœ ์ด๋ฆ„: {name}
    
    ์ฃผ์š” ๋Šฅ๋ ฅ:
    - ๊ทผ๋ ฅ: {'โ˜…' * int(stats['strength'] * 5)}
    - ์œ ์—ฐ์„ฑ: {'โ˜…' * int(stats['flexibility'] * 5)}
    - ์Šคํ”ผ๋“œ: {'โ˜…' * int(stats['speed'] * 5)}
    - ๋ฐฉ์–ด๋ ฅ: {'โ˜…' * int(stats['defense'] * 5)}
    
    ํŠน์ˆ˜ ๋Šฅ๋ ฅ: {', '.join(abilities)}
    """
    return description

def combined_generation(name, strength, flexibility, speed, defense, size, abilities,
                       sequence, seq_len, helix_bias, strand_bias, loop_bias, 
                       secondary_structure, aa_bias, aa_bias_potential, 
                       num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
                       contigs, pssm, seq_mask, str_mask, rewrite_pdb):
    try:
        # protein_diffusion_model ์‹คํ–‰
        generator = protein_diffusion_model(
            sequence=None,
            seq_len=size,  # ํžˆ์–ด๋กœ ํฌ๊ธฐ๋ฅผ seq_len์œผ๋กœ ์‚ฌ์šฉ
            helix_bias=flexibility,  # ํžˆ์–ด๋กœ ์œ ์—ฐ์„ฑ์„ helix_bias๋กœ ์‚ฌ์šฉ
            strand_bias=strength,    # ํžˆ์–ด๋กœ ๊ฐ•๋„๋ฅผ strand_bias๋กœ ์‚ฌ์šฉ
            loop_bias=speed,         # ํžˆ์–ด๋กœ ์Šคํ”ผ๋“œ๋ฅผ loop_bias๋กœ ์‚ฌ์šฉ
            secondary_structure=None,
            aa_bias=None,
            aa_bias_potential=None,
            num_steps="25",
            noise="normal",
            hydrophobic_target_score=str(-defense),  # ํžˆ์–ด๋กœ ๋ฐฉ์–ด๋ ฅ์„ hydrophobic score๋กœ ์‚ฌ์šฉ
            hydrophobic_potential="2",
            contigs=None,
            pssm=None,
            seq_mask=None,
            str_mask=None,
            rewrite_pdb=None
        )
        
        # ๋งˆ์ง€๋ง‰ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
        final_result = None
        for result in generator:
            final_result = result
            
        if final_result is None:
            raise Exception("์ƒ์„ฑ ๊ฒฐ๊ณผ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค")
            
        output_seq, output_pdb, structure_view, plddt_plot = final_result
        
        # ํžˆ์–ด๋กœ ๋Šฅ๋ ฅ์น˜ ๊ณ„์‚ฐ
        stats = calculate_hero_stats(flexibility, strength, speed, defense)
        
        # ๋ชจ๋“  ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
        return (
            create_radar_chart(stats),  # ๋Šฅ๋ ฅ์น˜ ์ฐจํŠธ
            generate_hero_description(name, stats, abilities),  # ํžˆ์–ด๋กœ ์„ค๋ช…
            output_seq,  # ๋‹จ๋ฐฑ์งˆ ์„œ์—ด
            output_pdb,  # PDB ํŒŒ์ผ
            structure_view,  # 3D ๊ตฌ์กฐ
            plddt_plot  # ์‹ ๋ขฐ๋„ ์ฐจํŠธ
        )
    except Exception as e:
        print(f"Error in combined_generation: {str(e)}")
        return (
            None,
            f"์—๋Ÿฌ: {str(e)}",
            None,
            None,
            gr.HTML("์—๋Ÿฌ๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค"),
            None
        )

with gr.Blocks(theme='ParityError/Interstellar') as demo:
    with gr.Row():
        # ์™ผ์ชฝ ์—ด: ์ฑ—๋ด‡ ๋ฐ ์ปจํŠธ๋กค ํŒจ๋„
        with gr.Column(scale=1):
            # ์ฑ—๋ด‡ ์ธํ„ฐํŽ˜์ด์Šค
            gr.Markdown("# ๐Ÿค– AI ๋‹จ๋ฐฑ์งˆ ์„ค๊ณ„ ๋„์šฐ๋ฏธ")
            chatbot = gr.Chatbot(height=600)
            
            with gr.Accordion("์ฑ„ํŒ… ์„ค์ •", open=False):
                system_message = gr.Textbox(
                    value="๋‹น์‹ ์€ ๋‹จ๋ฐฑ์งˆ ์„ค๊ณ„๋ฅผ ๋„์™€์ฃผ๋Š” ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.",
                    label="์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€"
                )
                max_tokens = gr.Slider(
                    minimum=1,
                    maximum=2048,
                    value=512,
                    step=1,
                    label="์ตœ๋Œ€ ํ† ํฐ ์ˆ˜"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                )


            # ํƒญ ์ธํ„ฐํŽ˜์ด์Šค
            with gr.Tabs():
                with gr.TabItem("๐Ÿฆธโ€โ™‚๏ธ ํžˆ์–ด๋กœ ๋””์ž์ธ"):
                    gr.Markdown("""
                    ### โœจ ๋‹น์‹ ๋งŒ์˜ ํŠน๋ณ„ํ•œ ํžˆ์–ด๋กœ๋ฅผ ๋งŒ๋“ค์–ด๋ณด์„ธ์š”!
                    ๊ฐ ๋Šฅ๋ ฅ์น˜๋ฅผ ์กฐ์ ˆํ•˜๋ฉด ํžˆ์–ด๋กœ์˜ DNA๊ฐ€ ์ž๋™์œผ๋กœ ์„ค๊ณ„๋ฉ๋‹ˆ๋‹ค.
                    """)
                    
                    # ํžˆ์–ด๋กœ ๊ธฐ๋ณธ ์ •๋ณด
                    hero_name = gr.Textbox(
                        label="ํžˆ์–ด๋กœ ์ด๋ฆ„", 
                        placeholder="๋‹น์‹ ์˜ ํžˆ์–ด๋กœ ์ด๋ฆ„์„ ์ง€์–ด์ฃผ์„ธ์š”!",
                        info="ํžˆ์–ด๋กœ์˜ ์ •์ฒด์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ด๋ฆ„์„ ์ž…๋ ฅํ•˜์„ธ์š”"
                    )
                    
                    # ๋Šฅ๋ ฅ์น˜ ์„ค์ •
                    gr.Markdown("### ๐Ÿ’ช ํžˆ์–ด๋กœ ๋Šฅ๋ ฅ์น˜ ์„ค์ •")
                    with gr.Row():
                        strength = gr.Slider(
                            minimum=0.0, maximum=0.05, 
                            label="๐Ÿ’ช ์ดˆ๊ฐ•๋ ฅ(๊ทผ๋ ฅ)", 
                            value=0.02,
                            info="๋‹จ๋‹จํ•œ ๋ฒ ํƒ€์‹œํŠธ ๊ตฌ์กฐ๋กœ ๊ฐ•๋ ฅํ•œ ํž˜์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค"
                        )
                        flexibility = gr.Slider(
                            minimum=0.0, maximum=0.05, 
                            label="๐Ÿคธโ€โ™‚๏ธ ์œ ์—ฐ์„ฑ", 
                            value=0.02,
                            info="๋‚˜์„ ํ˜• ์•ŒํŒŒํ—ฌ๋ฆญ์Šค ๊ตฌ์กฐ๋กœ ์œ ์—ฐํ•œ ์›€์ง์ž„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค"
                        )
                    
                    with gr.Row():
                        speed = gr.Slider(
                            minimum=0.0, maximum=0.20, 
                            label="โšก ์Šคํ”ผ๋“œ", 
                            value=0.1,
                            info="๋ฃจํ”„ ๊ตฌ์กฐ๋กœ ๋น ๋ฅธ ์›€์ง์ž„์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค"
                        )
                        defense = gr.Slider(
                            minimum=-10, maximum=10, 
                            label="๐Ÿ›ก๏ธ ๋ฐฉ์–ด๋ ฅ", 
                            value=0,
                            info="์Œ์ˆ˜: ์ˆ˜์ค‘ ํ™œ๋™์— ํŠนํ™”, ์–‘์ˆ˜: ์ง€์ƒ ํ™œ๋™์— ํŠนํ™”"
                        )
                    
                    # ํžˆ์–ด๋กœ ํฌ๊ธฐ ์„ค์ •
                    hero_size = gr.Slider(
                        minimum=50, maximum=200, 
                        label="๐Ÿ“ ํžˆ์–ด๋กœ ํฌ๊ธฐ", 
                        value=100,
                        info="ํžˆ์–ด๋กœ์˜ ์ „์ฒด์ ์ธ ํฌ๊ธฐ๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค"
                    )
                    
                    # ํŠน์ˆ˜ ๋Šฅ๋ ฅ ์„ค์ •
                    with gr.Accordion("๐ŸŒŸ ํŠน์ˆ˜ ๋Šฅ๋ ฅ", open=False):
                        gr.Markdown("""
                        ํŠน์ˆ˜ ๋Šฅ๋ ฅ์„ ์„ ํƒํ•˜๋ฉด ํžˆ์–ด๋กœ์˜ DNA์— ํŠน๋ณ„ํ•œ ๊ตฌ์กฐ๊ฐ€ ์ถ”๊ฐ€๋ฉ๋‹ˆ๋‹ค.
                        - ์ž๊ฐ€ ํšŒ๋ณต: ๋‹จ๋ฐฑ์งˆ ๊ตฌ์กฐ ๋ณต๊ตฌ ๋Šฅ๋ ฅ ๊ฐ•ํ™”
                        - ์›๊ฑฐ๋ฆฌ ๊ณต๊ฒฉ: ํŠน์ˆ˜ํ•œ ๊ตฌ์กฐ์  ๋Œ์ถœ๋ถ€ ํ˜•์„ฑ
                        - ๋ฐฉ์–ด๋ง‰ ์ƒ์„ฑ: ์•ˆ์ •์ ์ธ ๋ณดํ˜ธ์ธต ๊ตฌ์กฐ ์ƒ์„ฑ
                        """)
                        special_ability = gr.CheckboxGroup(
                            choices=["์ž๊ฐ€ ํšŒ๋ณต", "์›๊ฑฐ๋ฆฌ ๊ณต๊ฒฉ", "๋ฐฉ์–ด๋ง‰ ์ƒ์„ฑ"],
                            label="ํŠน์ˆ˜ ๋Šฅ๋ ฅ ์„ ํƒ"
                        )
                    
                    # ์ƒ์„ฑ ๋ฒ„ํŠผ
                    create_btn = gr.Button("๐Ÿงฌ ํžˆ์–ด๋กœ ์ƒ์„ฑ!", variant="primary", scale=2)

                with gr.TabItem("๐Ÿงฌ ํžˆ์–ด๋กœ DNA ์„ค๊ณ„"):
                    gr.Markdown("""
                    ### ๐Ÿงช ํžˆ์–ด๋กœ DNA ๊ณ ๊ธ‰ ์„ค์ •
                    ํžˆ์–ด๋กœ์˜ ์œ ์ „์ž ๊ตฌ์กฐ๋ฅผ ๋” ์„ธ๋ฐ€ํ•˜๊ฒŒ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
                    """)
                    
                    seq_opt = gr.Radio(
                        ["์ž๋™ ์„ค๊ณ„", "์ง์ ‘ ์ž…๋ ฅ"],
                        label="DNA ์„ค๊ณ„ ๋ฐฉ์‹",
                        value="์ž๋™ ์„ค๊ณ„"
                    )

                    sequence = gr.Textbox(
                        label="DNA ์‹œํ€€์Šค", 
                        lines=1, 
                        placeholder='์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์•„๋ฏธ๋…ธ์‚ฐ: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y (X๋Š” ๋ฌด์ž‘์œ„)',
                        visible=False
                    )
                    seq_len = gr.Slider(
                        minimum=5.0, maximum=250.0, 
                        label="DNA ๊ธธ์ด", 
                        value=100, 
                        visible=True
                    )
                    
                    with gr.Accordion(label='๐Ÿฆด ๊ณจ๊ฒฉ ๊ตฌ์กฐ ์„ค์ •', open=True):
                        gr.Markdown("""
                        ํžˆ์–ด๋กœ์˜ ๊ธฐ๋ณธ ๊ณจ๊ฒฉ ๊ตฌ์กฐ๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
                        - ๋‚˜์„ ํ˜• ๊ตฌ์กฐ: ์œ ์—ฐํ•˜๊ณ  ํƒ„๋ ฅ์žˆ๋Š” ์›€์ง์ž„
                        - ๋ณ‘ํ’ํ˜• ๊ตฌ์กฐ: ๋‹จ๋‹จํ•˜๊ณ  ๊ฐ•๋ ฅํ•œ ํž˜
                        - ๊ณ ๋ฆฌํ˜• ๊ตฌ์กฐ: ๋น ๋ฅด๊ณ  ๋ฏผ์ฒฉํ•œ ์›€์ง์ž„
                        """)
                        sec_str_opt = gr.Radio(
                            ["์Šฌ๋ผ์ด๋”๋กœ ์„ค์ •", "์ง์ ‘ ์ž…๋ ฅ"],
                            label="๊ณจ๊ฒฉ ๊ตฌ์กฐ ์„ค์ • ๋ฐฉ์‹",
                            value="์Šฌ๋ผ์ด๋”๋กœ ์„ค์ •"
                        )

                        secondary_structure = gr.Textbox(
                            label="๊ณจ๊ฒฉ ๊ตฌ์กฐ",
                            lines=1,
                            placeholder='H:๋‚˜์„ ํ˜•, S:๋ณ‘ํ’ํ˜•, L:๊ณ ๋ฆฌํ˜•, X:์ž๋™์„ค์ •',
                            visible=False
                        )
                        
                        with gr.Column():
                            helix_bias = gr.Slider(
                                minimum=0.0, maximum=0.05,
                                label="๋‚˜์„ ํ˜• ๊ตฌ์กฐ ๋น„์œจ",
                                visible=True
                            )
                            strand_bias = gr.Slider(
                                minimum=0.0, maximum=0.05,
                                label="๋ณ‘ํ’ํ˜• ๊ตฌ์กฐ ๋น„์œจ",
                                visible=True
                            )
                            loop_bias = gr.Slider(
                                minimum=0.0, maximum=0.20,
                                label="๊ณ ๋ฆฌํ˜• ๊ตฌ์กฐ ๋น„์œจ",
                                visible=True
                            )
                    
                    with gr.Accordion(label='๐Ÿงฌ DNA ๊ตฌ์„ฑ ์„ค์ •', open=False):
                        gr.Markdown("""
                        ํŠน์ • ์•„๋ฏธ๋…ธ์‚ฐ์˜ ๋น„์œจ์„ ์กฐ์ ˆํ•˜์—ฌ ํžˆ์–ด๋กœ์˜ ํŠน์„ฑ์„ ๊ฐ•ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
                        ์˜ˆ์‹œ: W0.2,E0.1 (ํŠธ๋ฆฝํ† ํŒ 20%, ๊ธ€๋ฃจํƒ์‚ฐ 10%)
                        """)
                        with gr.Row():
                            aa_bias = gr.Textbox(
                                label="์•„๋ฏธ๋…ธ์‚ฐ ๋น„์œจ", 
                                lines=1, 
                                placeholder='์˜ˆ์‹œ: W0.2,E0.1'
                            )
                            aa_bias_potential = gr.Textbox(
                                label="๊ฐ•ํ™” ์ •๋„", 
                                lines=1, 
                                placeholder='1.0-5.0 ์‚ฌ์ด ๊ฐ’ ์ž…๋ ฅ'
                            )

                    with gr.Accordion(label='๐ŸŒ ํ™˜๊ฒฝ ์ ์‘๋ ฅ ์„ค์ •', open=False):
                        gr.Markdown("""
                        ํžˆ์–ด๋กœ์˜ ํ™˜๊ฒฝ ์ ์‘๋ ฅ์„ ์กฐ์ ˆํ•ฉ๋‹ˆ๋‹ค.
                        ์Œ์ˆ˜: ์ˆ˜์ค‘ ํ™œ๋™์— ํŠนํ™”, ์–‘์ˆ˜: ์ง€์ƒ ํ™œ๋™์— ํŠนํ™”
                        """)
                        with gr.Row():
                            hydrophobic_target_score = gr.Textbox(
                                label="ํ™˜๊ฒฝ ์ ์‘ ์ ์ˆ˜",
                                lines=1,
                                placeholder='์˜ˆ์‹œ: -5 (์ˆ˜์ค‘ ํ™œ๋™์— ํŠนํ™”)'
                            )
                            hydrophobic_potential = gr.Textbox(
                                label="์ ์‘๋ ฅ ๊ฐ•ํ™” ์ •๋„",
                                lines=1,
                                placeholder='1.0-2.0 ์‚ฌ์ด ๊ฐ’ ์ž…๋ ฅ'
                            )

                    with gr.Accordion(label='โš™๏ธ ๊ณ ๊ธ‰ ์„ค์ •', open=False):
                        gr.Markdown("""
                        DNA ์ƒ์„ฑ ๊ณผ์ •์˜ ์„ธ๋ถ€ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
                        """)
                        with gr.Row():
                            num_steps = gr.Textbox(
                                label="์ƒ์„ฑ ๋‹จ๊ณ„",
                                lines=1,
                                placeholder='25 ์ดํ•˜ ๊ถŒ์žฅ'
                            )
                            noise = gr.Dropdown(
                                ['normal','gmm2 [-1,1]','gmm3 [-1,0,1]'],
                                label='๋…ธ์ด์ฆˆ ํƒ€์ž…',
                                value='normal'
                            )
                    
                    design_btn = gr.Button("๐Ÿงฌ DNA ์„ค๊ณ„ ์ƒ์„ฑ!", variant="primary", scale=2)

                with gr.TabItem("๐Ÿงช ํžˆ์–ด๋กœ ์œ ์ „์ž ๊ฐ•ํ™”"):
                    gr.Markdown("""
                    ### โšก ๊ธฐ์กด ํžˆ์–ด๋กœ์˜ DNA ํ™œ์šฉ
                    ๊ฐ•๋ ฅํ•œ ํžˆ์–ด๋กœ์˜ DNA ์ผ๋ถ€๋ฅผ ์ƒˆ๋กœ์šด ํžˆ์–ด๋กœ์—๊ฒŒ ์ด์‹ํ•ฉ๋‹ˆ๋‹ค.
                    """)
                    
                    gr.Markdown("๊ณต๊ฐœ๋œ ํžˆ์–ด๋กœ DNA ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ฝ”๋“œ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค")
                    pdb_id_code = gr.Textbox(
                        label="ํžˆ์–ด๋กœ DNA ์ฝ”๋“œ",
                        lines=1,
                        placeholder='๊ธฐ์กด ํžˆ์–ด๋กœ์˜ DNA ์ฝ”๋“œ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š” (์˜ˆ: 1DPX)'
                    )
                    
                    gr.Markdown("์ด์‹ํ•˜๊ณ  ์‹ถ์€ DNA ์˜์—ญ์„ ์„ ํƒํ•˜๊ณ  ์ƒˆ๋กœ์šด DNA๋ฅผ ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค")
                    contigs = gr.Textbox(
                        label="์ด์‹ํ•  DNA ์˜์—ญ",
                        lines=1,
                        placeholder='์˜ˆ์‹œ: 15,A3-10,20-30'
                    )
                    
                    with gr.Row():
                        seq_mask = gr.Textbox(
                            label='๋Šฅ๋ ฅ ์žฌ์„ค๊ณ„',
                            lines=1,
                            placeholder='์„ ํƒํ•œ ์˜์—ญ์˜ ๋Šฅ๋ ฅ์„ ์ƒˆ๋กญ๊ฒŒ ๋””์ž์ธ'
                        )
                        str_mask = gr.Textbox(
                            label='๊ตฌ์กฐ ์žฌ์„ค๊ณ„',
                            lines=1,
                            placeholder='์„ ํƒํ•œ ์˜์—ญ์˜ ๊ตฌ์กฐ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ๋””์ž์ธ'
                        )
                    
                    preview_viewer = gr.HTML()
                    rewrite_pdb = gr.File(label='ํžˆ์–ด๋กœ DNA ํŒŒ์ผ')
                    preview_btn = gr.Button("๐Ÿ” ๋ฏธ๋ฆฌ๋ณด๊ธฐ", variant="secondary")
                    enhance_btn = gr.Button("โšก ๊ฐ•ํ™”๋œ ํžˆ์–ด๋กœ ์ƒ์„ฑ!", variant="primary", scale=2)

                with gr.TabItem("๐Ÿ‘‘ ํžˆ์–ด๋กœ ๊ฐ€๋ฌธ"):
                    gr.Markdown("""
                    ### ๐Ÿฐ ์œ„๋Œ€ํ•œ ํžˆ์–ด๋กœ ๊ฐ€๋ฌธ์˜ ์œ ์‚ฐ
                    ๊ฐ•๋ ฅํ•œ ํžˆ์–ด๋กœ ๊ฐ€๋ฌธ์˜ ํŠน์„ฑ์„ ๊ณ„์Šนํ•˜์—ฌ ์ƒˆ๋กœ์šด ํžˆ์–ด๋กœ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
                    """)
                    
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("ํžˆ์–ด๋กœ ๊ฐ€๋ฌธ์˜ DNA ์ •๋ณด๊ฐ€ ๋‹ด๊ธด ํŒŒ์ผ์„ ์—…๋กœ๋“œํ•˜์„ธ์š”")
                            fasta_msa = gr.File(label='๊ฐ€๋ฌธ DNA ๋ฐ์ดํ„ฐ')
                        with gr.Column():
                            gr.Markdown("์ด๋ฏธ ๋ถ„์„๋œ ๊ฐ€๋ฌธ ํŠน์„ฑ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋‹ค๋ฉด ์—…๋กœ๋“œํ•˜์„ธ์š”")
                            input_pssm = gr.File(label='๊ฐ€๋ฌธ ํŠน์„ฑ ๋ฐ์ดํ„ฐ')
                    
                    pssm = gr.File(label='๋ถ„์„๋œ ๊ฐ€๋ฌธ ํŠน์„ฑ')
                    pssm_view = gr.Plot(label='๊ฐ€๋ฌธ ํŠน์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ')
                    pssm_gen_btn = gr.Button("โœจ ๊ฐ€๋ฌธ ํŠน์„ฑ ๋ถ„์„", variant="secondary")
                    inherit_btn = gr.Button("๐Ÿ‘‘ ๊ฐ€๋ฌธ์˜ ํž˜ ๊ณ„์Šน!", variant="primary", scale=2)

        # ์˜ค๋ฅธ์ชฝ ์—ด: ๊ฒฐ๊ณผ ํ‘œ์‹œ
        with gr.Column(scale=1):
            gr.Markdown("## ๐Ÿฆธโ€โ™‚๏ธ ํžˆ์–ด๋กœ ํ”„๋กœํ•„")
            hero_stats = gr.Plot(label="๋Šฅ๋ ฅ์น˜ ๋ถ„์„")
            hero_description = gr.Textbox(label="ํžˆ์–ด๋กœ ํŠน์„ฑ", lines=3)
            
            gr.Markdown("## ๐Ÿงฌ ํžˆ์–ด๋กœ DNA ๋ถ„์„ ๊ฒฐ๊ณผ")
            gr.Markdown("#### โšก DNA ์•ˆ์ •์„ฑ ์ ์ˆ˜")
            plddt_plot = gr.Plot(label='์•ˆ์ •์„ฑ ๋ถ„์„')
            gr.Markdown("#### ๐Ÿ“ DNA ์‹œํ€€์Šค")
            output_seq = gr.Textbox(label="DNA ์„œ์—ด")
            gr.Markdown("#### ๐Ÿ’พ DNA ๋ฐ์ดํ„ฐ")
            output_pdb = gr.File(label="DNA ํŒŒ์ผ")
            gr.Markdown("#### ๐Ÿ”ฌ DNA ๊ตฌ์กฐ")
            output_viewer = gr.HTML()

    # ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ
    # ์ฑ—๋ด‡ ์ด๋ฒคํŠธ
    msg.submit(process_chat, [msg, chatbot], [chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)

    # UI ์ปจํŠธ๋กค ์ด๋ฒคํŠธ
    seq_opt.change(
        fn=toggle_seq_input,
        inputs=[seq_opt],
        outputs=[seq_len, sequence],
        queue=False
    )

    sec_str_opt.change(
        fn=toggle_secondary_structure,
        inputs=[sec_str_opt],
        outputs=[helix_bias, strand_bias, loop_bias, secondary_structure],
        queue=False
    )

    preview_btn.click(
        get_motif_preview,
        inputs=[pdb_id_code, contigs],
        outputs=[preview_viewer, rewrite_pdb]
    )

    pssm_gen_btn.click(
        get_pssm,
        inputs=[fasta_msa, input_pssm],
        outputs=[pssm_view, pssm]
    )

    # ์ฑ—๋ด‡ ๊ธฐ๋ฐ˜ ๋‹จ๋ฐฑ์งˆ ์ƒ์„ฑ ๊ฒฐ๊ณผ ์—…๋ฐ์ดํŠธ
    def update_protein_display(chat_response):
        if "์ƒ์„ฑ๋œ ๋‹จ๋ฐฑ์งˆ ๋ถ„์„" in chat_response:
            params = extract_parameters_from_chat(chat_response)
            result = generate_protein(params)
            return {
                hero_stats: create_radar_chart(calculate_hero_stats(params)),
                hero_description: chat_response,
                output_seq: result[0],
                output_pdb: result[1],
                output_viewer: display_pdb(result[1]),
                plddt_plot: result[3]
            }
        return None

    # ๊ฐ ์ƒ์„ฑ ๋ฒ„ํŠผ ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ
    for btn in [create_btn, design_btn, enhance_btn, inherit_btn]:
        btn.click(
            combined_generation,
            inputs=[
                hero_name, strength, flexibility, speed, defense, hero_size, special_ability,
                sequence, seq_len, helix_bias, strand_bias, loop_bias, 
                secondary_structure, aa_bias, aa_bias_potential, 
                num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
                contigs, pssm, seq_mask, str_mask, rewrite_pdb
            ],
            outputs=[
                hero_stats, 
                hero_description, 
                output_seq,
                output_pdb,
                output_viewer,
                plddt_plot
            ]
        )

    # ์ฑ—๋ด‡ ์‘๋‹ต์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ ์—…๋ฐ์ดํŠธ
    msg.submit(
        update_protein_display,
        inputs=[chatbot],
        outputs=[hero_stats, hero_description, output_seq, output_pdb, output_viewer, plddt_plot]
    )

    chat_interface = gr.ChatInterface(
        respond,
        additional_inputs=[
            system_message,
            max_tokens,
            temperature,
            top_p,
        ],
        chatbot=chatbot,
    )

# ์‹คํ–‰
demo.queue()
demo.launch(debug=True)