File size: 11,136 Bytes
f9b9d56 83ee74c 574f73e 705c5b5 a352e50 83ee74c f9b9d56 e4d39de ad9db85 e4d39de a352e50 79e0b8a ad9db85 f9b9d56 2af89cf e4d39de a352e50 da20c1b a352e50 99d94e0 a352e50 e4d39de da20c1b e4d39de 2af89cf da20c1b 2af89cf da20c1b e4d39de da20c1b e4d39de 2af89cf 705c5b5 0997082 2af89cf 705c5b5 99d94e0 a352e50 2af89cf a352e50 99d94e0 a352e50 705c5b5 521288b a352e50 521288b e4d39de 705c5b5 e4d39de 0997082 d57197f ad9db85 e4d39de a352e50 705c5b5 7ffca43 2af89cf a352e50 2af89cf 7ffca43 a352e50 e4d39de 7ffca43 e4d39de 7ffca43 e4d39de a352e50 705c5b5 a352e50 0997082 705c5b5 0997082 ad9db85 da20c1b a352e50 da20c1b ad9db85 f2c0975 83ee74c 0997082 83ee74c 7ffca43 705c5b5 da20c1b a352e50 da20c1b 0997082 e4d39de a352e50 705c5b5 7b3fa19 7ffca43 7b3fa19 0dfd273 e4d39de 63c5e29 0dfd273 a352e50 0dfd273 7ffca43 a352e50 7ffca43 a352e50 7ffca43 a352e50 63c5e29 2af89cf ad9db85 e4d39de a352e50 ad9db85 a352e50 7ffca43 a352e50 d57197f 7ffca43 63c5e29 a352e50 e4d39de 63c5e29 e4d39de 7ffca43 ad9db85 da20c1b 7ffca43 a352e50 0dfd273 e4d39de 7ffca43 a352e50 da20c1b 7ffca43 63c5e29 e4d39de 63c5e29 a352e50 63c5e29 f9b9d56 0dfd273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
import pdfplumber
from typing import List, Tuple
# LLM Models Definition
LLM_MODELS = {
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct",
"Mistral Nemo 2407": "mistralai/Mistral-Nemo-Instruct-2407",
"Alibaba Qwen QwQ-32B": "Qwen/QwQ-32B-Preview"
}
def get_client(model_name):
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN"))
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv', 'pdf']:
try:
if file_type == 'pdf':
with pdfplumber.open(content) as pdf:
pages = pdf.pages
lines = []
for page in pages:
lines.extend(page.extract_text().split('\n'))
else:
lines = content.split('\n')
header = lines[0]
columns = len(header.split('|')) - 1
rows = len(lines) - 3
return f"π Dataset Structure: {columns} columns, {rows} data samples"
except:
return "β Dataset structure analysis failed"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"π» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"π Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words"
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext in ['.parquet', '.pdf']:
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
else:
df = pd.read_csv(file.name, encoding='utf-8', engine='python') # Use 'python' engine to handle PDF files
content = df.head(10).to_markdown(index=False)
return content, file_ext
elif file_ext == '.csv':
df = pd.read_csv(file.name)
content = f"π Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n"
content += f"\nπ Data Information:\n"
content += f"- Total Rows: {len(df)}\n"
content += f"- Total Columns: {len(df.columns)}\n"
content += f"- Column List: {', '.join(df.columns)}\n"
content += f"\nπ Column Data Types:\n"
for col, dtype in df.dtypes.items():
content += f"- {col}: {dtype}\n"
null_counts = df.isnull().sum()
if null_counts.any():
content += f"\nβ οΈ Missing Values:\n"
for col, null_count in null_counts[null_counts > 0].items():
content += f"- {col}: {null_count} missing\n"
return content, file_ext
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, file_ext
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"β Unable to read file with supported encodings ({', '.join(encodings)})")
except Exception as e:
return f"β Error reading file: {str(e)}", "error"
def format_history(history):
formatted_history = []
for user_msg, assistant_msg in history:
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_history.append({"role": "assistant", "content": assistant_msg})
return formatted_history
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
system_prefix = """You are a file analysis expert. Analyze the uploaded file in depth from the following perspectives:
1. π Overall structure and composition
2. π Key content and pattern analysis
3. π Data characteristics and meaning
- For datasets: Column meanings, data types, value distributions
- For text/code: Structural features, main patterns
4. π‘ Potential applications
5. β¨ Data quality and areas for improvement
Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way. Format the analysis results in Markdown and include specific examples where possible."""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if file_type == "error":
return "", [{"role": "user", "content": message}, {"role": "assistant", "content": content}]
file_summary = analyze_file_content(content, file_type)
if file_type in ['parquet', 'csv', 'pdf']:
system_message += f"\n\nFile Content:\n```markdown\n{content}\n```"
else:
system_message += f"\n\nFile Content:\n```\n{content}\n```"
if message == "Starting file analysis...":
message = f"""[ꡬ쑰 λΆμ] {file_summary}
μμΈν λΆμν΄μ£ΌμΈμ:
1. π μ 체 ꡬ쑰 λ° νμ
2. π μ£Όμ λ΄μ© λ° κ΅¬μ±μμ λΆμ
3. π λ°μ΄ν°/λ΄μ©μ νΉμ± λ° ν¨ν΄
4. β νμ§ λ° μμ μ± νκ°
5. π‘ μ μνλ κ°μ μ
6. π― μ€μ©μ μΈ νμ© λ° κΆμ₯μ¬ν"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
# Convert history to message format
if history is not None:
for item in history:
if isinstance(item, dict):
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
messages.append({"role": "user", "content": item[0]})
if item[1]:
messages.append({"role": "assistant", "content": item[1]})
messages.append({"role": "user", "content": message})
try:
client = get_client(model_name)
partial_message = ""
current_history = []
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
partial_message += token
current_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": partial_message}
]
yield "", current_history
except Exception as e:
error_msg = f"β Inference error: {str(e)}"
error_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
]
yield "", error_history
css = """
footer {visibility: hidden}
"""
# ... (μ΄μ μ½λ λμΌ)
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="EveryChat π€") as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">EveryChat π€</h1>
<h3 style="font-size: 1.2em; margin: 1em;">Your Intelligent File Analysis Assistant π</h3>
</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
label="μ±ν
μΈν°νμ΄μ€ π¬",
type="messages"
)
msg = gr.Textbox(
label="λ©μμ§λ₯Ό μ
λ ₯νμΈμ",
show_label=False,
placeholder="μ
λ‘λλ νμΌμ λν΄ λ¬Όμ΄λ³΄μΈμ... π",
container=False
)
send = gr.Button("μ μ‘ π€")
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(LLM_MODELS.keys()),
value="Cohere c4ai-crp-08-2024",
label="LLM λͺ¨λΈ μ ν π€",
info="μ νΈνλ AI λͺ¨λΈμ μ ννμΈμ"
)
gr.Markdown("### νμΌ μ
λ‘λ π\nμ§μ: ν
μ€νΈ, μ½λ, CSV, Parquet, PDF νμΌ")
file_upload = gr.File(
label="νμΌ μ
λ‘λ",
file_types=["text", ".csv", ".parquet", ".pdf"],
type="filepath"
)
with gr.Accordion("κ³ κΈ μ€μ βοΈ", open=False):
system_message = gr.Textbox(label="μμ€ν
λ©μμ§ π", value="")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="μ΅λ ν ν° π")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="μ¨λ π‘οΈ")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P π")
# Event bindings
msg.submit(
chat,
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
send.click(
chat,
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
# Auto-analysis on file upload
file_upload.change(
chat,
inputs=[gr.Textbox(value="νμΌ λΆμ μμ..."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
)
# Example queries
gr.Examples(
examples=[
["νμΌμ μ 체 ꡬ쑰μ νΉμ§μ μμΈν μ€λͺ
ν΄μ£ΌμΈμ π"],
["νμΌμ μ£Όμ ν¨ν΄κ³Ό νΉμ±μ λΆμν΄μ£ΌμΈμ π"],
["νμΌμ νμ§κ³Ό κ°μ μ μ νκ°ν΄μ£ΌμΈμ π‘"],
["μ΄ νμΌμ μ΄λ»κ² μ€μ©μ μΌλ‘ νμ©ν μ μμκΉμ? π―"],
["μ£Όμ λ΄μ©μ μμ½νκ³ ν΅μ¬ ν΅μ°°λ ₯μ λμΆν΄μ£ΌμΈμ β¨"],
["λ μμΈν λΆμμ κ³μν΄μ£ΌμΈμ π"],
],
inputs=msg,
)
if __name__ == "__main__":
demo.launch() |