File size: 45,904 Bytes
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
 
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
 
 
9d35d2c
3552d05
9d35d2c
 
 
 
 
 
 
 
 
 
 
3552d05
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
9d35d2c
 
 
 
 
3552d05
 
 
 
 
 
9d35d2c
3552d05
 
 
 
 
9d35d2c
3552d05
 
 
 
 
 
9d35d2c
 
3552d05
 
9d35d2c
 
3552d05
 
 
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
9d35d2c
 
 
 
3552d05
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
 
 
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
9d35d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3552d05
 
 
 
 
 
 
 
 
 
 
 
 
9d35d2c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import requests
import pandas as pd
from transformers import pipeline
from gradio_imageslider import ImageSlider
import numpy as np
import warnings

# 상단에 허깅페이스 USERNAME (해당 계정) 반드시 개별 지정할것
USERNAME = "openfree"

huggingface_token = os.getenv("HF_TOKEN")


translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")


        
#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model
dtype = torch.bfloat16

device = "cuda" if torch.cuda.is_available() else "cpu"

# 공통 FLUX 모델 로드
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

# LoRA를 위한 설정
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)

# Image-to-Image 파이프라인 설정
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
    base_model,
    vae=good_vae,
    transformer=pipe.transformer,
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    text_encoder_2=pipe.text_encoder_2,
    tokenizer_2=pipe.tokenizer_2,
    torch_dtype=dtype
).to(device)

MAX_SEED = 2**32 - 1
MAX_PIXEL_BUDGET = 1024 * 1024

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def download_file(url, directory=None):
    if directory is None:
        directory = os.getcwd()  # Use current working directory if not specified
    
    # Get the filename from the URL
    filename = url.split('/')[-1]
    
    # Full path for the downloaded file
    filepath = os.path.join(directory, filename)
    
    # Download the file
    response = requests.get(url)
    response.raise_for_status()  # Raise an exception for bad status codes
    
    # Write the content to the file
    with open(filepath, 'wb') as file:
        file.write(response.content)
    
    return filepath

def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
    selected_index = evt.index
    selected_indices = selected_indices or []
    if selected_index in selected_indices:
        selected_indices.remove(selected_index)
    else:
        if len(selected_indices) < 3:
            selected_indices.append(selected_index)
        else:
            gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
            return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()

    selected_info_1 = "Select LoRA 1"
    selected_info_2 = "Select LoRA 2"
    selected_info_3 = "Select LoRA 3"
    
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_scale_3 = 1.15    
    lora_image_1 = None
    lora_image_2 = None
    lora_image_3 = None
    
    if len(selected_indices) >= 1:
        lora1 = loras_state[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = loras_state[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    if len(selected_indices) >= 3:
        lora3 = loras_state[selected_indices[2]]
        selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
        lora_image_3 = lora3['image']
        
    if selected_indices:
        last_selected_lora = loras_state[selected_indices[-1]]
        new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
    else:
        new_placeholder = "Type a prompt after selecting a LoRA"

    return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3

def remove_lora(selected_indices, loras_state, index_to_remove):
    if len(selected_indices) > index_to_remove:
        selected_indices.pop(index_to_remove)
    
    selected_info_1 = "Select LoRA 1"
    selected_info_2 = "Select LoRA 2"
    selected_info_3 = "Select LoRA 3"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_scale_3 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    lora_image_3 = None
    
    for i, idx in enumerate(selected_indices):
        lora = loras_state[idx]
        if i == 0:
            selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨"
            lora_image_1 = lora['image']
        elif i == 1:
            selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨"
            lora_image_2 = lora['image']
        elif i == 2:
            selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨"
            lora_image_3 = lora['image']
    
    return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3

def remove_lora_1(selected_indices, loras_state):
    return remove_lora(selected_indices, loras_state, 0)

def remove_lora_2(selected_indices, loras_state):
    return remove_lora(selected_indices, loras_state, 1)

def remove_lora_3(selected_indices, loras_state):
    return remove_lora(selected_indices, loras_state, 2)

def randomize_loras(selected_indices, loras_state):
    try:
        if len(loras_state) < 3:
            raise gr.Error("Not enough LoRAs to randomize.")
        selected_indices = random.sample(range(len(loras_state)), 3)
        lora1 = loras_state[selected_indices[0]]
        lora2 = loras_state[selected_indices[1]]
        lora3 = loras_state[selected_indices[2]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
        selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
        lora_scale_1 = 1.15
        lora_scale_2 = 1.15
        lora_scale_3 = 1.15
        lora_image_1 = lora1.get('image', 'path/to/default/image.png')
        lora_image_2 = lora2.get('image', 'path/to/default/image.png')
        lora_image_3 = lora3.get('image', 'path/to/default/image.png')
        random_prompt = random.choice(prompt_values)
        return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
    except Exception as e:
        print(f"Error in randomize_loras: {str(e)}")
        return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""

def add_custom_lora(custom_lora, selected_indices, current_loras):
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
            if existing_item_index is None:
                if repo.endswith(".safetensors") and repo.startswith("http"):
                    repo = download_file(repo)
                new_item = {
                    "image": image if image else "/home/user/app/custom.png",
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(f"New LoRA: {new_item}")
                existing_item_index = len(current_loras)
                current_loras.append(new_item)
            
            # Update gallery
            gallery_items = [(item["image"], item["title"]) for item in current_loras]
            # Update selected_indices if there's room
            if len(selected_indices) < 3:
                selected_indices.append(existing_item_index)
            else:
                gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")

            # Update selected_info and images
            selected_info_1 = "Select a LoRA 1"
            selected_info_2 = "Select a LoRA 2"
            selected_info_3 = "Select a LoRA 3"
            lora_scale_1 = 1.15
            lora_scale_2 = 1.15
            lora_scale_3 = 1.15
            lora_image_1 = None
            lora_image_2 = None
            lora_image_3 = None
            if len(selected_indices) >= 1:
                lora1 = current_loras[selected_indices[0]]
                selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
                lora_image_1 = lora1['image'] if lora1['image'] else None
            if len(selected_indices) >= 2:
                lora2 = current_loras[selected_indices[1]]
                selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
                lora_image_2 = lora2['image'] if lora2['image'] else None
            if len(selected_indices) >= 3:
                lora3 = current_loras[selected_indices[2]]
                selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨"
                lora_image_3 = lora3['image'] if lora3['image'] else None
            print("Finished adding custom LoRA")
            return (
                current_loras,
                gr.update(value=gallery_items),
                selected_info_1, 
                selected_info_2,
                selected_info_3,
                selected_indices,
                lora_scale_1,
                lora_scale_2,
                lora_scale_3,
                lora_image_1,
                lora_image_2,
                lora_image_3
            )
        except Exception as e:
            print(e)
            gr.Warning(str(e))
            return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
    else:
        return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()

def remove_custom_lora(selected_indices, current_loras):
    if current_loras:
        custom_lora_repo = current_loras[-1]['repo']
        # Remove from loras list
        current_loras = current_loras[:-1]
        # Remove from selected_indices if selected
        custom_lora_index = len(current_loras)
        if custom_lora_index in selected_indices:
            selected_indices.remove(custom_lora_index)
    # Update gallery
    gallery_items = [(item["image"], item["title"]) for item in current_loras]
    # Update selected_info and images
    selected_info_1 = "Select a LoRA 1"
    selected_info_2 = "Select a LoRA 2"
    selected_info_3 = "Select a LoRA 3"
    lora_scale_1 = 1.15
    lora_scale_2 = 1.15
    lora_scale_3 = 1.15
    lora_image_1 = None
    lora_image_2 = None
    lora_image_3 = None
    if len(selected_indices) >= 1:
        lora1 = current_loras[selected_indices[0]]
        selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
        lora_image_1 = lora1['image']
    if len(selected_indices) >= 2:
        lora2 = current_loras[selected_indices[1]]
        selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
        lora_image_2 = lora2['image']
    if len(selected_indices) >= 3:
        lora3 = current_loras[selected_indices[2]]
        selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
        lora_image_3 = lora3['image']
    return (
        current_loras,
        gr.update(value=gallery_items),
        selected_info_1,
        selected_info_2,
        selected_info_3,
        selected_indices,
        lora_scale_1,
        lora_scale_2,
        lora_scale_3,
        lora_image_1,
        lora_image_2,
        lora_image_3
    )


def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
    print("Generating image...")
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": 1.0},
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img


def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
    pipe_i2i.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": 1.0},
        output_type="pil",
    ).images[0]
    return final_image

def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, 
             lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, 
             width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
    try:
        # 한글 감지 및 번역
        if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
            translated = translator(prompt, max_length=512)[0]['translation_text']
            print(f"Original prompt: {prompt}")
            print(f"Translated prompt: {translated}")
            prompt = translated

        if not selected_indices:
            raise gr.Error("You must select at least one LoRA before proceeding.")

        selected_loras = [loras_state[idx] for idx in selected_indices]

        # Build the prompt with trigger words
        prepends = []
        appends = []
        for lora in selected_loras:
            trigger_word = lora.get('trigger_word', '')
            if trigger_word:
                if lora.get("trigger_position") == "prepend":
                    prepends.append(trigger_word)
                else:
                    appends.append(trigger_word)
        prompt_mash = " ".join(prepends + [prompt] + appends)
        print("Prompt Mash: ", prompt_mash)

        # Unload previous LoRA weights
        with calculateDuration("Unloading LoRA"):
            pipe.unload_lora_weights()
            pipe_i2i.unload_lora_weights()
            
        print(f"Active adapters before loading: {pipe.get_active_adapters()}")
        
        # Load LoRA weights with respective scales
        lora_names = []
        lora_weights = []

        with calculateDuration("Loading LoRA weights"):
            for idx, lora in enumerate(selected_loras):
                try:
                    lora_name = f"lora_{idx}"
                    lora_path = lora['repo']
            
                    # Private 모델인 경우 특별 처리
                    if lora.get('private', False):
                        lora_path = load_private_model(lora_path, huggingface_token)
                        print(f"Using private model path: {lora_path}")
            
                    if image_input is not None:
                        pipe_i2i.load_lora_weights(
                            lora_path,
                            adapter_name=lora_name,
                            token=huggingface_token
                        )
                    else:
                        pipe.load_lora_weights(
                            lora_path,
                            adapter_name=lora_name,
                            token=huggingface_token
                        )
            
                    lora_names.append(lora_name)
                    lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
                    print(f"Successfully loaded LoRA {lora_name} from {lora_path}")
            
                except Exception as e:
                    print(f"Failed to load LoRA {lora_name}: {str(e)}")
                    continue



            print("Loaded LoRAs:", lora_names)
            print("Adapter weights:", lora_weights)
            
            if lora_names:
                if image_input is not None:
                    pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
                else:
                    pipe.set_adapters(lora_names, adapter_weights=lora_weights)
            else:
                print("No LoRAs were successfully loaded.")
                return None, seed, gr.update(visible=False)

        print(f"Active adapters after loading: {pipe.get_active_adapters()}")

        # Randomize seed if needed
        with calculateDuration("Randomizing seed"):
            if randomize_seed:
                seed = random.randint(0, MAX_SEED)

        # Generate image
        if image_input is not None:
            final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
        else:
            image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
            final_image = None
            step_counter = 0
            for image in image_generator:
                step_counter += 1
                final_image = image
                progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
                yield image, seed, gr.update(value=progress_bar, visible=True)

        if final_image is None:
            raise Exception("Failed to generate image")
        
        return final_image, seed, gr.update(visible=False)

    except Exception as e:
        print(f"Error in run_lora: {str(e)}")
        return None, seed, gr.update(visible=False)

run_lora.zerogpu = True

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) == 2:
        model_card = ModelCard.load(link)
        base_model = model_card.data.get("base_model")
        print(f"Base model: {base_model}")
        if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
            raise Exception("Not a FLUX LoRA!")
        image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
        fs = HfFileSystem()
        safetensors_name = None
        try:
            list_of_files = fs.ls(link, detail=False)
            for file in list_of_files:
                if file.endswith(".safetensors"):
                    safetensors_name = file.split("/")[-1]
                if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                    image_elements = file.split("/")
                    image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
        except Exception as e:
            print(e)
            raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
        if not safetensors_name:
            raise gr.Error("No *.safetensors file found in the repository")
        return split_link[1], link, safetensors_name, trigger_word, image_url
    else:
        raise gr.Error("Invalid Hugging Face repository link")

def check_custom_model(link):
    if link.endswith(".safetensors"):
        # Treat as direct link to the LoRA weights
        title = os.path.basename(link)
        repo = link
        path = None  # No specific weight name
        trigger_word = ""
        image_url = None
        return title, repo, path, trigger_word, image_url
    elif link.startswith("https://"):
        if "huggingface.co" in link:
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
        else:
            raise Exception("Unsupported URL")
    else:
        # Assume it's a Hugging Face model path
        return get_huggingface_safetensors(link)

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if history is None:
        history = []
    if new_image is not None:
        history.insert(0, new_image)
    return history



def refresh_models(huggingface_token):
    try:
        headers = {
            "Authorization": f"Bearer {huggingface_token}",
            "Accept": "application/json"
        }
        
        username = USERNAME
        api_url = f"https://huggingface.co/api/models?author={username}"
        response = requests.get(api_url, headers=headers)
        if response.status_code != 200:
            raise Exception(f"Failed to fetch models from HuggingFace. Status code: {response.status_code}")
            
        all_models = response.json()
        print(f"Found {len(all_models)} models for user {username}")
        
        user_models = [
            model for model in all_models 
            if model.get('tags') and ('flux' in [tag.lower() for tag in model.get('tags', [])] or
                                    'flux-lora' in [tag.lower() for tag in model.get('tags', [])])
        ]
        
        print(f"Found {len(user_models)} FLUX models")
        
        new_models = []
        for model in user_models:
            try:
                model_id = model['id']
                model_card_url = f"https://huggingface.co/api/models/{model_id}"
                model_info_response = requests.get(model_card_url, headers=headers)
                model_info = model_info_response.json()
                
                # 이미지 URL에 토큰을 포함시키는 방식으로 변경
                is_private = model.get('private', False)
                base_image_name = "1732195028106__000001000_0.jpg"  # 기본 이미지 이름
                
                try:
                    # 실제 이미지 파일 확인
                    fs = HfFileSystem(token=huggingface_token)
                    samples_path = f"{model_id}/samples"
                    files = fs.ls(samples_path, detail=True)
                    jpg_files = [
                        f['name'] for f in files 
                        if isinstance(f, dict) and 
                        'name' in f and 
                        f['name'].lower().endswith('.jpg') and 
                        any(char.isdigit() for char in os.path.basename(f['name']))
                    ]
                    
                    if jpg_files:
                        base_image_name = os.path.basename(jpg_files[0])
                except Exception as e:
                    print(f"Error accessing samples folder for {model_id}: {str(e)}")
                
                # 이미지 URL 구성 (토큰 포함)
                if is_private:
                    # Private 모델의 경우 로컬 캐시 경로 사용
                    cache_dir = f"models/{model_id.replace('/', '_')}/samples"
                    os.makedirs(cache_dir, exist_ok=True)
                    
                    # 이미지 다운로드
                    image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}"
                    local_image_path = os.path.join(cache_dir, base_image_name)
                    
                    if not os.path.exists(local_image_path):
                        response = requests.get(image_url, headers=headers)
                        if response.status_code == 200:
                            with open(local_image_path, 'wb') as f:
                                f.write(response.content)
                    
                    image_url = local_image_path
                else:
                    image_url = f"https://huggingface.co/{model_id}/resolve/main/samples/{base_image_name}"
                
                model_info = {
                    "image": image_url,
                    "title": f"[Private] {model_id.split('/')[-1]}" if is_private else model_id.split('/')[-1],
                    "repo": model_id,
                    "weights": "pytorch_lora_weights.safetensors",
                    "trigger_word": model_info.get('instance_prompt', ''),
                    "private": is_private
                }
                new_models.append(model_info)
                print(f"Added model: {model_id} with image: {image_url}")
                
            except Exception as e:
                print(f"Error processing model {model['id']}: {str(e)}")
                continue
        
        updated_loras = new_models + [lora for lora in loras if lora['repo'] not in [m['repo'] for m in new_models]]
        
        print(f"Total models after refresh: {len(updated_loras)}")
        return updated_loras
    except Exception as e:
        print(f"Error refreshing models: {str(e)}")
        return loras

def load_private_model(model_id, huggingface_token):
    """Private 모델을 로드하는 함수"""
    try:
        headers = {"Authorization": f"Bearer {huggingface_token}"}
        
        # 모델 다운로드
        local_dir = snapshot_download(
            repo_id=model_id,
            token=huggingface_token,
            local_dir=f"models/{model_id.replace('/', '_')}",
            local_dir_use_symlinks=False
        )
        
        # safetensors 파일 찾기
        safetensors_file = None
        for root, dirs, files in os.walk(local_dir):
            for file in files:
                if file.endswith('.safetensors'):
                    safetensors_file = os.path.join(root, file)
                    break
            if safetensors_file:
                break
        
        if not safetensors_file:
            raise Exception(f"No .safetensors file found in {local_dir}")
            
        print(f"Found safetensors file: {safetensors_file}")
        return safetensors_file  # 전체 경로를 반환
        
    except Exception as e:
        print(f"Error loading private model {model_id}: {str(e)}")
        raise e

custom_theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="purple",
    neutral_hue="slate",
).set(
    button_primary_background_fill="*primary_500",
    button_primary_background_fill_dark="*primary_600",
    button_primary_background_fill_hover="*primary_400",
    button_primary_border_color="*primary_500",
    button_primary_border_color_dark="*primary_600",
    button_primary_text_color="white",
    button_primary_text_color_dark="white",
    button_secondary_background_fill="*neutral_100",
    button_secondary_background_fill_dark="*neutral_700",
    button_secondary_background_fill_hover="*neutral_50",
    button_secondary_text_color="*neutral_800",
    button_secondary_text_color_dark="white",
    background_fill_primary="*neutral_50",
    background_fill_primary_dark="*neutral_900",
    block_background_fill="white",
    block_background_fill_dark="*neutral_800",
    block_label_background_fill="*primary_500",
    block_label_background_fill_dark="*primary_600",
    block_label_text_color="white",
    block_label_text_color_dark="white",
    block_title_text_color="*neutral_800",
    block_title_text_color_dark="white",
    input_background_fill="white",
    input_background_fill_dark="*neutral_800",
    input_border_color="*neutral_200",
    input_border_color_dark="*neutral_700",
    input_placeholder_color="*neutral_400",
    input_placeholder_color_dark="*neutral_400",
    shadow_spread="8px",
    shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.05)"
)

css = '''
/* 기본 버튼 및 컴포넌트 스타일 */
#gen_btn {
    height: 100%
}

#title {
    text-align: center
}

#title h1 {
    font-size: 3em; 
    display: inline-flex; 
    align-items: center
}

#title img {
    width: 100px; 
    margin-right: 0.25em
}

#lora_list {
    background: var(--block-background-fill);
    padding: 0 1em .3em; 
    font-size: 90%
}

/* 커스텀 LoRA 카드 스타일 */
.custom_lora_card {
    margin-bottom: 1em
}

.card_internal {
    display: flex;
    height: 100px;
    margin-top: .5em
}

.card_internal img {
    margin-right: 1em
}

/* 유틸리티 클래스 */
.styler {
    --form-gap-width: 0px !important
}

/* 프로그레스 바 스타일 */
#progress {
    height: 30px;
    width: 90% !important;
    margin: 0 auto !important;
}

#progress .generating {
    display: none
}

.progress-container {
    width: 100%;
    height: 30px;
    background-color: #f0f0f0;
    border-radius: 15px;
    overflow: hidden;
    margin-bottom: 20px
}

.progress-bar {
    height: 100%;
    background-color: #4f46e5;
    width: calc(var(--current) / var(--total) * 100%);
    transition: width 0.5s ease-in-out
}

/* 컴포넌트 특정 스타일 */
#component-8, .button_total {
    height: 100%; 
    align-self: stretch;
}

#loaded_loras [data-testid="block-info"] {
    font-size: 80%
}

#custom_lora_structure {
    background: var(--block-background-fill)
}

#custom_lora_btn {
    margin-top: auto;
    margin-bottom: 11px
}

#random_btn {
    font-size: 300%
}

#component-11 {
    align-self: stretch;
}

/* 갤러리 메인 스타일 */
#lora_gallery {
    margin: 20px 0;
    padding: 10px;
    border: 1px solid #ddd;
    border-radius: 12px;
    background: linear-gradient(to bottom right, #ffffff, #f8f9fa);
    width: 100% !important;
    height: 800px !important;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
    display: block !important;
}

/* 갤러리 그리드 스타일 */
#gallery {
    display: grid !important;
    grid-template-columns: repeat(10, 1fr) !important;
    gap: 10px !important;
    padding: 10px !important;
    width: 100% !important;
    height: 100% !important;
    overflow-y: auto !important;
    max-width: 100% !important;
}

/* 갤러리 아이템 스타일 */
.gallery-item {
    position: relative !important;
    width: 100% !important;
    aspect-ratio: 1 !important;
    margin: 0 !important;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
    transition: transform 0.3s ease, box-shadow 0.3s ease;
    border-radius: 12px;
    overflow: hidden;
}

.gallery-item img {
    width: 100% !important;
    height: 100% !important;
    object-fit: cover !important;
    border-radius: 12px !important;
}

/* 갤러리 그리드 래퍼 */
.wrap, .svelte-w6dy5e {
    display: grid !important;
    grid-template-columns: repeat(10, 1fr) !important;
    gap: 10px !important;
    width: 100% !important;
    max-width: 100% !important;
}

/* 컨테이너 공통 스타일 */
.container, .content, .block, .contain {
    width: 100% !important;
    max-width: 100% !important;
    margin: 0 !important;
    padding: 0 !important;
}

.row {
    width: 100% !important;
    margin: 0 !important;
    padding: 0 !important;
}

/* 버튼 스타일 */
.button_total {
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
    transition: all 0.3s ease;
}

.button_total:hover {
    transform: translateY(-2px);
    box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
}

/* 입력 필드 스타일 */
input, textarea {
    box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06);
    transition: all 0.3s ease;
}

input:focus, textarea:focus {
    box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}

/* 컴포넌트 border-radius */
.gradio-container .input, 
.gradio-container .button,
.gradio-container .block {
    border-radius: 12px;
}

/* 스크롤바 스타일 */
#gallery::-webkit-scrollbar {
    width: 8px;
}

#gallery::-webkit-scrollbar-track {
    background: #f1f1f1;
    border-radius: 4px;
}

#gallery::-webkit-scrollbar-thumb {
    background: #888;
    border-radius: 4px;
}

#gallery::-webkit-scrollbar-thumb:hover {
    background: #555;
}

/* Flex 컨테이너 */
.flex {
    width: 100% !important;
    max-width: 100% !important;
    display: flex !important;
}

/* Svelte 특정 클래스 */
.svelte-1p9xokt {
    width: 100% !important;
    max-width: 100% !important;
}

/* Footer 숨김 */
#footer {
    visibility: hidden;
}

/* 결과 이미지 및 컨테이너 스타일 */
#result_column, #result_column > div {
    display: flex !important;
    flex-direction: column !important;
    align-items: flex-start !important;  /* center에서 flex-start로 변경 */
    width: 100% !important;
    margin: 0 !important;  /* auto에서 0으로 변경 */
}

.generated-image, .generated-image > div {
    display: flex !important;
    justify-content: flex-start !important;  /* center에서 flex-start로 변경 */
    align-items: flex-start !important;  /* center에서 flex-start로 변경 */
    width: 90% !important;
    max-width: 768px !important;
    margin: 0 !important;  /* auto에서 0으로 변경 */
    margin-left: 20px !important;  /* 왼쪽 여백 추가 */
}

.generated-image img {
    margin: 0 !important;  /* auto에서 0으로 변경 */
    display: block !important;
    max-width: 100% !important;
}

/* 히스토리 갤러리도 좌측 정렬로 변경 */
.history-gallery {
    display: flex !important;
    justify-content: flex-start !important;  /* center에서 flex-start로 변경 */
    width: 90% !important;
    max-width: 90% !important;
    margin: 0 !important;  /* auto에서 0으로 변경 */
    margin-left: 20px !important;  /* 왼쪽 여백 추가 */

/* 새로고침 버튼 스타일 */
#refresh-button {
    margin: 10px;
    padding: 8px 16px;
    background-color: #4a5568;
    color: white;
    border-radius: 8px;
    transition: all 0.3s ease;
}

#refresh-button:hover {
    background-color: #2d3748;
    transform: scale(1.05);
}

#refresh-button:active {
    transform: scale(0.95);
}    
}
'''

with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
    loras_state = gr.State(loras)
    selected_indices = gr.State([])

    gr.Markdown(
        """
        # MixGen3: 멀티 Lora(이미지 학습) 통합 생성 모델
        ### 사용 안내:
        갤러리에서 원하는 모델을 선택(최대 3개까지) < 프롬프트에 한글 또는 영문으로 원하는 내용을 입력 < Generate 버튼 실행  
        """
    )
    # 새로고침 버튼 추가
    with gr.Row():
        refresh_button = gr.Button("🔄 모델 새로고침(나만의 맞춤 학습된 Private 모델 불러오기)", variant="secondary")

    with gr.Row(elem_id="lora_gallery", equal_height=True):
        gallery = gr.Gallery(
            value=[(item["image"], item["title"]) for item in loras],
            label="LoRA Explorer Gallery",
            columns=11,
            elem_id="gallery",
            height=800,
            object_fit="cover",
            show_label=True,
            allow_preview=False,
            show_share_button=False,
            container=True,
            preview=False
        )


    with gr.Tab(label="Generate"):
        # Prompt and Generate Button
        with gr.Row():
            with gr.Column(scale=3):
                prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
            with gr.Column(scale=1):
                generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])

        # LoRA Selection Area
        with gr.Row(elem_id="loaded_loras"):
            # Randomize Button
            with gr.Column(scale=1, min_width=25):
                randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
            
            # LoRA 1
            with gr.Column(scale=8):
                with gr.Row():
                    with gr.Column(scale=0, min_width=50):
                        lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                    with gr.Column(scale=3, min_width=100):
                        selected_info_1 = gr.Markdown("Select a LoRA 1")
                    with gr.Column(scale=5, min_width=50):
                        lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
                with gr.Row():
                    remove_button_1 = gr.Button("Remove", size="sm")

            # LoRA 2
            with gr.Column(scale=8):
                with gr.Row():
                    with gr.Column(scale=0, min_width=50):
                        lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                    with gr.Column(scale=3, min_width=100):
                        selected_info_2 = gr.Markdown("Select a LoRA 2")
                    with gr.Column(scale=5, min_width=50):
                        lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
                with gr.Row():
                    remove_button_2 = gr.Button("Remove", size="sm")

            # LoRA 3
            with gr.Column(scale=8):
                with gr.Row():
                    with gr.Column(scale=0, min_width=50):
                        lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
                    with gr.Column(scale=3, min_width=100):
                        selected_info_3 = gr.Markdown("Select a LoRA 3")
                    with gr.Column(scale=5, min_width=50):
                        lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
                with gr.Row():
                    remove_button_3 = gr.Button("Remove", size="sm")

        # Result and Progress Area
        with gr.Column(elem_id="result_column"):
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            with gr.Column(elem_id="result_box"):  # Box를 Column으로 변경
                result = gr.Image(
                    label="Generated Image", 
                    interactive=False,
                    elem_classes=["generated-image"],
                    container=True,
                    elem_id="result_image",
                    width="100%"
                )
            with gr.Accordion("History", open=False):
                history_gallery = gr.Gallery(
                    label="History", 
                    columns=6, 
                    object_fit="contain", 
                    interactive=False,
                    elem_classes=["history-gallery"]
                )


        # Advanced Settings
        with gr.Row():
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    input_image = gr.Image(label="Input image", type="filepath")
                    image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                with gr.Column():
                    with gr.Row():
                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                        steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                    with gr.Row():
                        width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                        height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                    with gr.Row():
                        randomize_seed = gr.Checkbox(True, label="Randomize seed")
                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)

        # Custom LoRA Section
        with gr.Column():
            with gr.Group():
                with gr.Row(elem_id="custom_lora_structure"):
                    custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
                    add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
                remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
                gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")

        # Event Handlers
        gallery.select(
            update_selection,
            inputs=[selected_indices, loras_state, width, height],
            outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, 
                lora_scale_1, lora_scale_2, lora_scale_3, width, height, 
                lora_image_1, lora_image_2, lora_image_3]
        )

        remove_button_1.click(
            remove_lora_1,
            inputs=[selected_indices, loras_state],
            outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, 
                lora_scale_1, lora_scale_2, lora_scale_3, 
                lora_image_1, lora_image_2, lora_image_3]
        )

        remove_button_2.click(
            remove_lora_2,
            inputs=[selected_indices, loras_state],
            outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, 
                lora_scale_1, lora_scale_2, lora_scale_3, 
                lora_image_1, lora_image_2, lora_image_3]
        )

        remove_button_3.click(
            remove_lora_3,
            inputs=[selected_indices, loras_state],
            outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, 
                lora_scale_1, lora_scale_2, lora_scale_3, 
                lora_image_1, lora_image_2, lora_image_3]
        )

        randomize_button.click(
            randomize_loras,
            inputs=[selected_indices, loras_state],
            outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, 
                lora_scale_1, lora_scale_2, lora_scale_3, 
                lora_image_1, lora_image_2, lora_image_3, prompt]
        )

        add_custom_lora_button.click(
            add_custom_lora,
            inputs=[custom_lora, selected_indices, loras_state],
            outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, 
                selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, 
                lora_image_1, lora_image_2, lora_image_3]
        )

        remove_custom_lora_button.click(
            remove_custom_lora,
            inputs=[selected_indices, loras_state],
            outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, 
                selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, 
                lora_image_1, lora_image_2, lora_image_3]
        )

        gr.on(
            triggers=[generate_button.click, prompt.submit],
            fn=run_lora,
            inputs=[prompt, input_image, image_strength, cfg_scale, steps, 
                selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, 
                randomize_seed, seed, width, height, loras_state],
            outputs=[result, seed, progress_bar]
        ).then(
            fn=lambda x, history: update_history(x, history) if x is not None else history,
            inputs=[result, history_gallery],
            outputs=history_gallery
        )

# 새로고침 버튼 이벤트 핸들러
    def refresh_gallery():
        updated_loras = refresh_models(huggingface_token)
        return (
            gr.update(value=[(item["image"], item["title"]) for item in updated_loras]),
            updated_loras
        )

    refresh_button.click(
        refresh_gallery,
        outputs=[gallery, loras_state]
    )

if __name__ == "__main__":
    app.queue(max_size=20)
    app.launch(debug=True)