|
import os |
|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image |
|
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images |
|
from diffusers.utils import load_image |
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
import copy |
|
import random |
|
import time |
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) |
|
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model, |
|
vae=good_vae, |
|
transformer=pipe.transformer, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer_2=pipe.tokenizer_2, |
|
torch_dtype=dtype |
|
) |
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
def update_selection(evt: gr.SelectData, selected_indices, width, height): |
|
selected_index = evt.index |
|
selected_indices = selected_indices or [] |
|
if selected_index in selected_indices: |
|
|
|
selected_indices.remove(selected_index) |
|
else: |
|
if len(selected_indices) < 2: |
|
selected_indices.append(selected_index) |
|
else: |
|
raise gr.Error("You can select up to 2 LoRAs only.") |
|
|
|
|
|
selected_info_1 = "" |
|
selected_info_2 = "" |
|
lora_scale_1 = 0.95 |
|
lora_scale_2 = 0.95 |
|
if len(selected_indices) >= 1: |
|
lora1 = loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
if len(selected_indices) >= 2: |
|
lora2 = loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
|
|
|
|
if selected_indices: |
|
last_selected_lora = loras[selected_indices[-1]] |
|
new_placeholder = f"Type a prompt for {last_selected_lora['title']}" |
|
else: |
|
new_placeholder = "Type a prompt after selecting a LoRA" |
|
|
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
selected_info_1, |
|
selected_info_2, |
|
selected_indices, |
|
lora_scale_1, |
|
lora_scale_2, |
|
width, |
|
height, |
|
) |
|
|
|
def remove_lora_1(selected_indices): |
|
selected_indices = selected_indices or [] |
|
if len(selected_indices) >= 1: |
|
selected_indices.pop(0) |
|
|
|
selected_info_1 = "" |
|
selected_info_2 = "" |
|
lora_scale_1 = 0.95 |
|
lora_scale_2 = 0.95 |
|
if len(selected_indices) >= 1: |
|
lora1 = loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
if len(selected_indices) >= 2: |
|
lora2 = loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2 |
|
|
|
def remove_lora_2(selected_indices): |
|
selected_indices = selected_indices or [] |
|
if len(selected_indices) >= 2: |
|
selected_indices.pop(1) |
|
|
|
selected_info_1 = "" |
|
selected_info_2 = "" |
|
lora_scale_1 = 0.95 |
|
lora_scale_2 = 0.95 |
|
if len(selected_indices) >= 1: |
|
lora1 = loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
if len(selected_indices) >= 2: |
|
lora2 = loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2 |
|
|
|
def randomize_loras(selected_indices): |
|
if len(loras) < 2: |
|
raise gr.Error("Not enough LoRAs to randomize.") |
|
selected_indices = random.sample(range(len(loras)), 2) |
|
selected_info_1 = f"### LoRA 1 Selected: [{loras[selected_indices[0]]['title']}](https://huggingface.co/{loras[selected_indices[0]]['repo']}) ✨" |
|
selected_info_2 = f"### LoRA 2 Selected: [{loras[selected_indices[1]]['title']}](https://huggingface.co/{loras[selected_indices[1]]['repo']}) ✨" |
|
lora_scale_1 = 0.95 |
|
lora_scale_2 = 0.95 |
|
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2 |
|
|
|
@spaces.GPU(duration=70) |
|
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress): |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
with calculateDuration("Generating image"): |
|
|
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( |
|
prompt=prompt_mash, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": 1.0}, |
|
output_type="pil", |
|
good_vae=good_vae, |
|
): |
|
yield img |
|
|
|
@spaces.GPU(duration=70) |
|
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed): |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
pipe_i2i.to("cuda") |
|
image_input = load_image(image_input_path) |
|
final_image = pipe_i2i( |
|
prompt=prompt_mash, |
|
image=image_input, |
|
strength=image_strength, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": 1.0}, |
|
output_type="pil", |
|
).images[0] |
|
return final_image |
|
|
|
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)): |
|
if not selected_indices: |
|
raise gr.Error("You must select at least one LoRA before proceeding.") |
|
|
|
selected_loras = [loras[idx] for idx in selected_indices] |
|
|
|
|
|
prompt_mash = prompt |
|
for lora in selected_loras: |
|
trigger_word = lora.get('trigger_word', '') |
|
if trigger_word: |
|
if lora.get("trigger_position") == "prepend": |
|
prompt_mash = f"{trigger_word} {prompt_mash}" |
|
else: |
|
prompt_mash = f"{prompt_mash} {trigger_word}" |
|
|
|
|
|
with calculateDuration("Unloading LoRA"): |
|
pipe.unload_lora_weights() |
|
pipe_i2i.unload_lora_weights() |
|
|
|
|
|
with calculateDuration("Loading LoRA weights"): |
|
for idx, lora in enumerate(selected_loras): |
|
lora_path = lora['repo'] |
|
scale = lora_scale_1 if idx == 0 else lora_scale_2 |
|
if image_input is not None: |
|
if "weights" in lora: |
|
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale) |
|
else: |
|
pipe_i2i.load_lora_weights(lora_path, multiplier=scale) |
|
else: |
|
if "weights" in lora: |
|
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale) |
|
else: |
|
pipe.load_lora_weights(lora_path, multiplier=scale) |
|
|
|
|
|
with calculateDuration("Randomizing seed"): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
if image_input is not None: |
|
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed) |
|
yield final_image, seed, gr.update(visible=False) |
|
else: |
|
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) |
|
|
|
final_image = None |
|
step_counter = 0 |
|
for image in image_generator: |
|
step_counter+=1 |
|
final_image = image |
|
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' |
|
yield image, seed, gr.update(value=progress_bar, visible=True) |
|
yield final_image, seed, gr.update(value=progress_bar, visible=False) |
|
|
|
def get_huggingface_safetensors(link): |
|
split_link = link.split("/") |
|
if len(split_link) == 2: |
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(base_model) |
|
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: |
|
raise Exception("Not a FLUX LoRA!") |
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
fs = HfFileSystem() |
|
safetensors_name = None |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
for file in list_of_files: |
|
if file.endswith(".safetensors"): |
|
safetensors_name = file.split("/")[-1] |
|
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): |
|
image_elements = file.split("/") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
except Exception as e: |
|
print(e) |
|
raise Exception("Invalid Hugging Face repository with a *.safetensors LoRA") |
|
if not safetensors_name: |
|
raise Exception("No *.safetensors file found in the repository") |
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
|
|
def check_custom_model(link): |
|
if link.startswith("https://"): |
|
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
else: |
|
return get_huggingface_safetensors(link) |
|
|
|
def add_custom_lora(custom_lora, selected_indices): |
|
global loras |
|
if custom_lora: |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Loaded custom LoRA: {repo}") |
|
card = f''' |
|
<div class="custom_lora_card"> |
|
<span>Loaded custom LoRA:</span> |
|
<div class="card_internal"> |
|
<img src="{image}" /> |
|
<div> |
|
<h3>{title}</h3> |
|
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> |
|
</div> |
|
</div> |
|
</div> |
|
''' |
|
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) |
|
if existing_item_index is None: |
|
new_item = { |
|
"image": image, |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word |
|
} |
|
print(new_item) |
|
existing_item_index = len(loras) |
|
loras.append(new_item) |
|
|
|
|
|
gallery_items = [(item["image"], item["title"]) for item in loras] |
|
|
|
if len(selected_indices) < 2: |
|
selected_indices.append(existing_item_index) |
|
selected_info_1 = "" |
|
selected_info_2 = "" |
|
lora_scale_1 = 0.95 |
|
lora_scale_2 = 0.95 |
|
if len(selected_indices) >= 1: |
|
lora1 = loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
if len(selected_indices) >= 2: |
|
lora2 = loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items), |
|
selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2) |
|
else: |
|
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items), |
|
gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()) |
|
except Exception as e: |
|
print(e) |
|
return gr.update(visible=True, value=str(e)), gr.update(visible=True), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange() |
|
else: |
|
return gr.update(visible=False), gr.update(visible=False), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange() |
|
|
|
def remove_custom_lora(custom_lora_info, custom_lora_button, selected_indices): |
|
global loras |
|
if loras: |
|
custom_lora_repo = loras[-1]['repo'] |
|
|
|
loras = loras[:-1] |
|
|
|
custom_lora_index = len(loras) |
|
if custom_lora_index in selected_indices: |
|
selected_indices.remove(custom_lora_index) |
|
|
|
gallery_items = [(item["image"], item["title"]) for item in loras] |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(value=gallery_items), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange() |
|
|
|
run_lora.zerogpu = True |
|
|
|
css = ''' |
|
#gen_btn{height: 100%} |
|
#title{text-align: center} |
|
#title h1{font-size: 3em; display:inline-flex; align-items:center} |
|
#title img{width: 100px; margin-right: 0.5em} |
|
#gallery .grid-wrap{height: 10vh} |
|
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} |
|
.custom_lora_card{margin-bottom: 1em} |
|
.card_internal{display: flex;height: 100px;margin-top: .5em} |
|
.card_internal img{margin-right: 1em} |
|
.styler{--form-gap-width: 0px !important} |
|
#progress{height:30px} |
|
#progress .generating{display:none} |
|
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} |
|
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} |
|
''' |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app: |
|
title = gr.HTML( |
|
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""", |
|
elem_id="title", |
|
) |
|
selected_indices = gr.State([]) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
with gr.Column(scale=1, elem_id="gen_column"): |
|
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") |
|
randomize_button = gr.Button("🎲", variant="secondary") |
|
with gr.Row(): |
|
selected_info_1 = gr.Markdown("") |
|
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95) |
|
remove_button_1 = gr.Button("Remove LoRA 1") |
|
selected_info_2 = gr.Markdown("") |
|
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95) |
|
remove_button_2 = gr.Button("Remove LoRA 2") |
|
with gr.Row(): |
|
with gr.Column(): |
|
gallery = gr.Gallery( |
|
[(item["image"], item["title"]) for item in loras], |
|
label="LoRA Gallery", |
|
allow_preview=False, |
|
columns=3, |
|
elem_id="gallery" |
|
) |
|
with gr.Group(): |
|
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux") |
|
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") |
|
custom_lora_info = gr.HTML(visible=False) |
|
custom_lora_button = gr.Button("Remove custom LoRA", visible=False) |
|
with gr.Column(): |
|
progress_bar = gr.Markdown(elem_id="progress",visible=False) |
|
result = gr.Image(label="Generated Image") |
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input image", type="filepath") |
|
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) |
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) |
|
|
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) |
|
|
|
gallery.select( |
|
update_selection, |
|
inputs=[selected_indices, width, height], |
|
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height] |
|
) |
|
remove_button_1.click( |
|
remove_lora_1, |
|
inputs=[selected_indices], |
|
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2] |
|
) |
|
remove_button_2.click( |
|
remove_lora_2, |
|
inputs=[selected_indices], |
|
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2] |
|
) |
|
randomize_button.click( |
|
randomize_loras, |
|
inputs=[selected_indices], |
|
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2] |
|
) |
|
|
|
custom_lora.change( |
|
add_custom_lora, |
|
inputs=[custom_lora, selected_indices], |
|
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2] |
|
) |
|
custom_lora_button.click( |
|
remove_custom_lora, |
|
inputs=[custom_lora_info, custom_lora_button, selected_indices], |
|
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2] |
|
) |
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height], |
|
outputs=[result, seed, progress_bar] |
|
) |
|
|
|
app.queue() |
|
app.launch() |
|
|