Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,19 @@ import logging
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
-
from diffusers import
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from diffusers.utils import load_image
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
import copy
|
@@ -15,19 +26,13 @@ import time
|
|
15 |
import requests
|
16 |
import pandas as pd
|
17 |
from transformers import pipeline
|
18 |
-
|
19 |
-
import logging
|
20 |
import warnings
|
21 |
-
|
22 |
-
from diffusers import FluxControlNetModel
|
23 |
-
from diffusers.pipelines import FluxControlNetPipeline
|
24 |
-
from PIL import Image
|
25 |
-
from huggingface_hub import snapshot_download
|
26 |
|
27 |
# 번역 모델 로드
|
28 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
29 |
|
30 |
-
#Load prompts for randomization
|
31 |
df = pd.read_csv('prompts.csv', header=None)
|
32 |
prompt_values = df.values.flatten()
|
33 |
|
@@ -40,14 +45,9 @@ dtype = torch.bfloat16
|
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
base_model = "black-forest-labs/FLUX.1-dev"
|
42 |
|
43 |
-
# FLUX 모델 한 번만 로드
|
44 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
45 |
-
|
46 |
-
# VAE 설정
|
47 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
48 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
49 |
-
|
50 |
-
# Image2Image 파이프라인 설정
|
51 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
52 |
base_model,
|
53 |
vae=good_vae,
|
@@ -57,27 +57,32 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
57 |
text_encoder_2=pipe.text_encoder_2,
|
58 |
tokenizer_2=pipe.tokenizer_2,
|
59 |
torch_dtype=dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
).to(device)
|
61 |
|
62 |
MAX_SEED = 2**32 - 1
|
|
|
63 |
|
64 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
65 |
|
66 |
-
# ControlNet 모델과 파이프라인 (필요할 때만 로드)
|
67 |
-
controlnet = None
|
68 |
-
pipe_controlnet = None
|
69 |
-
|
70 |
-
def load_controlnet():
|
71 |
-
global controlnet, pipe_controlnet
|
72 |
-
if controlnet is None:
|
73 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
74 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
75 |
-
).to(device)
|
76 |
-
if pipe_controlnet is None:
|
77 |
-
pipe_controlnet = FluxControlNetPipeline.from_pretrained(
|
78 |
-
base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
|
79 |
-
).to(device)
|
80 |
-
|
81 |
class calculateDuration:
|
82 |
def __init__(self, activity_name=""):
|
83 |
self.activity_name = activity_name
|
@@ -97,23 +102,23 @@ class calculateDuration:
|
|
97 |
def download_file(url, directory=None):
|
98 |
if directory is None:
|
99 |
directory = os.getcwd() # Use current working directory if not specified
|
100 |
-
|
101 |
# Get the filename from the URL
|
102 |
filename = url.split('/')[-1]
|
103 |
-
|
104 |
# Full path for the downloaded file
|
105 |
filepath = os.path.join(directory, filename)
|
106 |
-
|
107 |
# Download the file
|
108 |
response = requests.get(url)
|
109 |
response.raise_for_status() # Raise an exception for bad status codes
|
110 |
-
|
111 |
# Write the content to the file
|
112 |
with open(filepath, 'wb') as file:
|
113 |
file.write(response.content)
|
114 |
-
|
115 |
return filepath
|
116 |
-
|
117 |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
118 |
selected_index = evt.index
|
119 |
selected_indices = selected_indices or []
|
@@ -221,7 +226,7 @@ def add_custom_lora(custom_lora, selected_indices, current_loras):
|
|
221 |
print(f"New LoRA: {new_item}")
|
222 |
existing_item_index = len(current_loras)
|
223 |
current_loras.append(new_item)
|
224 |
-
|
225 |
# Update gallery
|
226 |
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
227 |
# Update selected_indices if there's room
|
@@ -371,7 +376,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
371 |
with calculateDuration("Unloading LoRA"):
|
372 |
pipe.unload_lora_weights()
|
373 |
pipe_i2i.unload_lora_weights()
|
374 |
-
|
375 |
print(pipe.get_active_adapters())
|
376 |
# Load LoRA weights with respective scales
|
377 |
lora_names = []
|
@@ -484,43 +489,7 @@ def update_history(new_image, history):
|
|
484 |
history.insert(0, new_image)
|
485 |
return history
|
486 |
|
487 |
-
|
488 |
-
#gen_btn{height: 100%}
|
489 |
-
#title{text-align: center}
|
490 |
-
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
491 |
-
#title img{width: 100px; margin-right: 0.25em}
|
492 |
-
#gallery .grid-wrap{height: 5vh}
|
493 |
-
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
494 |
-
.custom_lora_card{margin-bottom: 1em}
|
495 |
-
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
496 |
-
.card_internal img{margin-right: 1em}
|
497 |
-
.styler{--form-gap-width: 0px !important}
|
498 |
-
#progress{height:30px}
|
499 |
-
#progress .generating{display:none}
|
500 |
-
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
501 |
-
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
502 |
-
#component-8, .button_total{height: 100%; align-self: stretch;}
|
503 |
-
#loaded_loras [data-testid="block-info"]{font-size:80%}
|
504 |
-
#custom_lora_structure{background: var(--block-background-fill)}
|
505 |
-
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
|
506 |
-
#random_btn{font-size: 300%}
|
507 |
-
#component-11{align-self: stretch;}
|
508 |
-
footer {visibility: hidden;}
|
509 |
-
'''
|
510 |
-
|
511 |
-
huggingface_token = os.getenv("HF_TOKEN")
|
512 |
-
|
513 |
-
model_path = snapshot_download(
|
514 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
515 |
-
repo_type="model",
|
516 |
-
ignore_patterns=["*.md", "*..gitattributes"],
|
517 |
-
local_dir="FLUX.1-dev",
|
518 |
-
token=huggingface_token,
|
519 |
-
)
|
520 |
-
|
521 |
-
MAX_SEED = 1000000
|
522 |
-
|
523 |
-
def process_input(input_image, upscale_factor):
|
524 |
w, h = input_image.size
|
525 |
w_original, h_original = w, h
|
526 |
aspect_ratio = w / h
|
@@ -549,155 +518,237 @@ def process_input(input_image, upscale_factor):
|
|
549 |
|
550 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
551 |
|
552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
input_image, w_original, h_original, was_resized = process_input(input_image, 4)
|
563 |
-
|
564 |
-
# 4096x4096 크기로 조정
|
565 |
-
control_image = input_image.resize((4096, 4096))
|
566 |
-
|
567 |
-
generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED))
|
568 |
-
|
569 |
-
gr.Info("Upscaling image to 4096x4096...")
|
570 |
-
upscaled_image = pipe_controlnet(
|
571 |
prompt="",
|
572 |
-
|
573 |
-
controlnet_conditioning_scale=
|
574 |
-
num_inference_steps=
|
575 |
guidance_scale=3.5,
|
576 |
-
height=
|
577 |
-
width=
|
578 |
generator=generator,
|
579 |
).images[0]
|
580 |
|
581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
|
583 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
584 |
|
585 |
loras_state = gr.State(loras)
|
586 |
selected_indices = gr.State([])
|
587 |
-
with gr.
|
588 |
-
with gr.
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
with gr.Row():
|
598 |
-
with gr.Column(scale=0, min_width=50):
|
599 |
-
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
600 |
-
with gr.Column(scale=3, min_width=100):
|
601 |
-
selected_info_1 = gr.Markdown("Select a LoRA 1")
|
602 |
-
with gr.Column(scale=5, min_width=50):
|
603 |
-
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
604 |
-
with gr.Row():
|
605 |
-
remove_button_1 = gr.Button("Remove", size="sm")
|
606 |
-
with gr.Column(scale=8):
|
607 |
-
with gr.Row():
|
608 |
-
with gr.Column(scale=0, min_width=50):
|
609 |
-
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
610 |
-
with gr.Column(scale=3, min_width=100):
|
611 |
-
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
612 |
-
with gr.Column(scale=5, min_width=50):
|
613 |
-
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
614 |
-
with gr.Row():
|
615 |
-
remove_button_2 = gr.Button("Remove", size="sm")
|
616 |
-
with gr.Row():
|
617 |
-
with gr.Column():
|
618 |
-
with gr.Group():
|
619 |
-
with gr.Row(elem_id="custom_lora_structure"):
|
620 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
|
621 |
-
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
|
622 |
-
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
|
623 |
-
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
624 |
-
gallery = gr.Gallery(
|
625 |
-
[(item["image"], item["title"]) for item in loras],
|
626 |
-
label="Or pick from the LoRA Explorer gallery",
|
627 |
-
allow_preview=False,
|
628 |
-
columns=4,
|
629 |
-
elem_id="gallery"
|
630 |
-
)
|
631 |
-
with gr.Column():
|
632 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
633 |
-
result = gr.Image(label="Generated Image", elem_id="result_image")
|
634 |
-
with gr.Accordion("History", open=False):
|
635 |
-
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
636 |
-
|
637 |
-
with gr.Row():
|
638 |
-
with gr.Accordion("Advanced Settings", open=False):
|
639 |
-
with gr.Row():
|
640 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
641 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
642 |
-
with gr.Column():
|
643 |
with gr.Row():
|
644 |
-
|
645 |
-
|
646 |
-
|
|
|
|
|
|
|
647 |
with gr.Row():
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
with gr.Row():
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
remove_custom_lora,
|
681 |
-
inputs=[selected_indices, loras_state],
|
682 |
-
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
683 |
-
)
|
684 |
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
701 |
|
702 |
app.queue()
|
703 |
-
app.launch()
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
+
from diffusers import (
|
9 |
+
DiffusionPipeline,
|
10 |
+
AutoencoderTiny,
|
11 |
+
AutoencoderKL,
|
12 |
+
AutoPipelineForImage2Image,
|
13 |
+
FluxControlNetModel,
|
14 |
+
FluxControlNetPipeline,
|
15 |
+
)
|
16 |
+
from live_preview_helpers import (
|
17 |
+
calculate_shift,
|
18 |
+
retrieve_timesteps,
|
19 |
+
flux_pipe_call_that_returns_an_iterable_of_images,
|
20 |
+
)
|
21 |
from diffusers.utils import load_image
|
22 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
23 |
import copy
|
|
|
26 |
import requests
|
27 |
import pandas as pd
|
28 |
from transformers import pipeline
|
|
|
|
|
29 |
import warnings
|
30 |
+
from gradio_imageslider import ImageSlider
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# 번역 모델 로드
|
33 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
34 |
|
35 |
+
# Load prompts for randomization
|
36 |
df = pd.read_csv('prompts.csv', header=None)
|
37 |
prompt_values = df.values.flatten()
|
38 |
|
|
|
45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
base_model = "black-forest-labs/FLUX.1-dev"
|
47 |
|
|
|
|
|
|
|
|
|
48 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
49 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
50 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
|
|
51 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
52 |
base_model,
|
53 |
vae=good_vae,
|
|
|
57 |
text_encoder_2=pipe.text_encoder_2,
|
58 |
tokenizer_2=pipe.tokenizer_2,
|
59 |
torch_dtype=dtype
|
60 |
+
)
|
61 |
+
|
62 |
+
# Load controlnet model for upscaling
|
63 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
64 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=dtype
|
65 |
+
).to(device)
|
66 |
+
|
67 |
+
pipe_controlnet = FluxControlNetPipeline(
|
68 |
+
vae=pipe.vae,
|
69 |
+
text_encoder=pipe.text_encoder,
|
70 |
+
tokenizer=pipe.tokenizer,
|
71 |
+
text_encoder_2=pipe.text_encoder_2,
|
72 |
+
tokenizer_2=pipe.tokenizer_2,
|
73 |
+
unet=pipe.unet,
|
74 |
+
controlnet=controlnet,
|
75 |
+
scheduler=pipe.scheduler,
|
76 |
+
safety_checker=pipe.safety_checker,
|
77 |
+
feature_extractor=pipe.feature_extractor,
|
78 |
+
torch_dtype=dtype
|
79 |
).to(device)
|
80 |
|
81 |
MAX_SEED = 2**32 - 1
|
82 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
83 |
|
84 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
class calculateDuration:
|
87 |
def __init__(self, activity_name=""):
|
88 |
self.activity_name = activity_name
|
|
|
102 |
def download_file(url, directory=None):
|
103 |
if directory is None:
|
104 |
directory = os.getcwd() # Use current working directory if not specified
|
105 |
+
|
106 |
# Get the filename from the URL
|
107 |
filename = url.split('/')[-1]
|
108 |
+
|
109 |
# Full path for the downloaded file
|
110 |
filepath = os.path.join(directory, filename)
|
111 |
+
|
112 |
# Download the file
|
113 |
response = requests.get(url)
|
114 |
response.raise_for_status() # Raise an exception for bad status codes
|
115 |
+
|
116 |
# Write the content to the file
|
117 |
with open(filepath, 'wb') as file:
|
118 |
file.write(response.content)
|
119 |
+
|
120 |
return filepath
|
121 |
+
|
122 |
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
123 |
selected_index = evt.index
|
124 |
selected_indices = selected_indices or []
|
|
|
226 |
print(f"New LoRA: {new_item}")
|
227 |
existing_item_index = len(current_loras)
|
228 |
current_loras.append(new_item)
|
229 |
+
|
230 |
# Update gallery
|
231 |
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
232 |
# Update selected_indices if there's room
|
|
|
376 |
with calculateDuration("Unloading LoRA"):
|
377 |
pipe.unload_lora_weights()
|
378 |
pipe_i2i.unload_lora_weights()
|
379 |
+
|
380 |
print(pipe.get_active_adapters())
|
381 |
# Load LoRA weights with respective scales
|
382 |
lora_names = []
|
|
|
489 |
history.insert(0, new_image)
|
490 |
return history
|
491 |
|
492 |
+
def process_input(input_image, upscale_factor, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
w, h = input_image.size
|
494 |
w_original, h_original = w, h
|
495 |
aspect_ratio = w / h
|
|
|
518 |
|
519 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
520 |
|
521 |
+
@spaces.GPU#(duration=42)
|
522 |
+
def infer(
|
523 |
+
seed,
|
524 |
+
randomize_seed,
|
525 |
+
input_image,
|
526 |
+
num_inference_steps,
|
527 |
+
upscale_factor,
|
528 |
+
controlnet_conditioning_scale,
|
529 |
+
progress=gr.Progress(track_tqdm=True),
|
530 |
+
):
|
531 |
+
if randomize_seed:
|
532 |
+
seed = random.randint(0, MAX_SEED)
|
533 |
+
true_input_image = input_image
|
534 |
+
input_image, w_original, h_original, was_resized = process_input(
|
535 |
+
input_image, upscale_factor
|
536 |
+
)
|
537 |
|
538 |
+
# rescale with upscale factor
|
539 |
+
w, h = input_image.size
|
540 |
+
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
541 |
+
|
542 |
+
generator = torch.Generator().manual_seed(seed)
|
543 |
+
|
544 |
+
gr.Info("Upscaling image...")
|
545 |
+
image = pipe_controlnet(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
prompt="",
|
547 |
+
control_image=control_image,
|
548 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
549 |
+
num_inference_steps=num_inference_steps,
|
550 |
guidance_scale=3.5,
|
551 |
+
height=control_image.size[1],
|
552 |
+
width=control_image.size[0],
|
553 |
generator=generator,
|
554 |
).images[0]
|
555 |
|
556 |
+
if was_resized:
|
557 |
+
gr.Info(
|
558 |
+
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
559 |
+
)
|
560 |
+
|
561 |
+
# resize to target desired size
|
562 |
+
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
563 |
+
image.save("output.jpg")
|
564 |
+
# convert to numpy
|
565 |
+
return [true_input_image, image, seed]
|
566 |
+
|
567 |
+
css = '''
|
568 |
+
#gen_btn{height: 100%}
|
569 |
+
#title{text-align: center}
|
570 |
+
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
571 |
+
#title img{width: 100px; margin-right: 0.25em}
|
572 |
+
#gallery .grid-wrap{height: 5vh}
|
573 |
+
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
574 |
+
.custom_lora_card{margin-bottom: 1em}
|
575 |
+
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
576 |
+
.card_internal img{margin-right: 1em}
|
577 |
+
.styler{--form-gap-width: 0px !important}
|
578 |
+
#progress{height:30px}
|
579 |
+
#progress .generating{display:none}
|
580 |
+
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
581 |
+
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
582 |
+
#component-8, .button_total{height: 100%; align-self: stretch;}
|
583 |
+
#loaded_loras [data-testid="block-info"]{font-size:80%}
|
584 |
+
#custom_lora_structure{background: var(--block-background-fill)}
|
585 |
+
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
|
586 |
+
#random_btn{font-size: 300%}
|
587 |
+
#component-11{align-self: stretch;}
|
588 |
+
footer {visibility: hidden;}
|
589 |
+
'''
|
590 |
|
591 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
592 |
|
593 |
loras_state = gr.State(loras)
|
594 |
selected_indices = gr.State([])
|
595 |
+
with gr.Tab("Generate"):
|
596 |
+
with gr.Row():
|
597 |
+
with gr.Column(scale=3):
|
598 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
599 |
+
with gr.Column(scale=1):
|
600 |
+
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
601 |
+
with gr.Row(elem_id="loaded_loras"):
|
602 |
+
with gr.Column(scale=1, min_width=25):
|
603 |
+
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
|
604 |
+
with gr.Column(scale=8):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
with gr.Row():
|
606 |
+
with gr.Column(scale=0, min_width=50):
|
607 |
+
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
608 |
+
with gr.Column(scale=3, min_width=100):
|
609 |
+
selected_info_1 = gr.Markdown("Select a LoRA 1")
|
610 |
+
with gr.Column(scale=5, min_width=50):
|
611 |
+
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
612 |
with gr.Row():
|
613 |
+
remove_button_1 = gr.Button("Remove", size="sm")
|
614 |
+
with gr.Column(scale=8):
|
|
|
615 |
with gr.Row():
|
616 |
+
with gr.Column(scale=0, min_width=50):
|
617 |
+
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
618 |
+
with gr.Column(scale=3, min_width=100):
|
619 |
+
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
620 |
+
with gr.Column(scale=5, min_width=50):
|
621 |
+
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
622 |
+
with gr.Row():
|
623 |
+
remove_button_2 = gr.Button("Remove", size="sm")
|
624 |
+
with gr.Row():
|
625 |
+
with gr.Column():
|
626 |
+
with gr.Group():
|
627 |
+
with gr.Row(elem_id="custom_lora_structure"):
|
628 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
|
629 |
+
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
|
630 |
+
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
|
631 |
+
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
632 |
+
gallery = gr.Gallery(
|
633 |
+
[(item["image"], item["title"]) for item in loras],
|
634 |
+
label="Or pick from the LoRA Explorer gallery",
|
635 |
+
allow_preview=False,
|
636 |
+
columns=4,
|
637 |
+
elem_id="gallery"
|
638 |
+
)
|
639 |
+
with gr.Column():
|
640 |
+
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
641 |
+
result = gr.Image(label="Generated Image", interactive=False)
|
642 |
+
with gr.Accordion("History", open=False):
|
643 |
+
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
|
|
|
|
|
|
|
|
644 |
|
645 |
+
with gr.Row():
|
646 |
+
with gr.Accordion("Advanced Settings", open=False):
|
647 |
+
with gr.Row():
|
648 |
+
input_image = gr.Image(label="Input image", type="filepath")
|
649 |
+
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
650 |
+
with gr.Column():
|
651 |
+
with gr.Row():
|
652 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
653 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
654 |
+
|
655 |
+
with gr.Row():
|
656 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
657 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
658 |
+
|
659 |
+
with gr.Row():
|
660 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
661 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
662 |
+
|
663 |
+
gallery.select(
|
664 |
+
update_selection,
|
665 |
+
inputs=[selected_indices, loras_state, width, height],
|
666 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2])
|
667 |
+
remove_button_1.click(
|
668 |
+
remove_lora_1,
|
669 |
+
inputs=[selected_indices, loras_state],
|
670 |
+
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
671 |
+
)
|
672 |
+
remove_button_2.click(
|
673 |
+
remove_lora_2,
|
674 |
+
inputs=[selected_indices, loras_state],
|
675 |
+
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
676 |
+
)
|
677 |
+
randomize_button.click(
|
678 |
+
randomize_loras,
|
679 |
+
inputs=[selected_indices, loras_state],
|
680 |
+
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt]
|
681 |
+
)
|
682 |
+
add_custom_lora_button.click(
|
683 |
+
add_custom_lora,
|
684 |
+
inputs=[custom_lora, selected_indices, loras_state],
|
685 |
+
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
686 |
+
)
|
687 |
+
remove_custom_lora_button.click(
|
688 |
+
remove_custom_lora,
|
689 |
+
inputs=[selected_indices, loras_state],
|
690 |
+
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
691 |
+
)
|
692 |
+
gr.on(
|
693 |
+
triggers=[generate_button.click, prompt.submit],
|
694 |
+
fn=run_lora,
|
695 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
696 |
+
outputs=[result, seed, progress_bar]
|
697 |
+
).then( # Update the history gallery
|
698 |
+
fn=lambda x, history: update_history(x, history),
|
699 |
+
inputs=[result, history_gallery],
|
700 |
+
outputs=history_gallery,
|
701 |
+
)
|
702 |
|
703 |
+
with gr.Tab("Upscale"):
|
704 |
+
with gr.Row():
|
705 |
+
input_image_upscale = gr.Image(label="Input Image", type="pil")
|
706 |
+
result_upscale = ImageSlider(label="Input / Output", type="pil", interactive=True)
|
707 |
+
with gr.Row():
|
708 |
+
num_inference_steps_upscale = gr.Slider(
|
709 |
+
label="Number of Inference Steps",
|
710 |
+
minimum=8,
|
711 |
+
maximum=50,
|
712 |
+
step=1,
|
713 |
+
value=28,
|
714 |
+
)
|
715 |
+
upscale_factor = gr.Slider(
|
716 |
+
label="Upscale Factor",
|
717 |
+
minimum=1,
|
718 |
+
maximum=4,
|
719 |
+
step=1,
|
720 |
+
value=4,
|
721 |
+
)
|
722 |
+
controlnet_conditioning_scale = gr.Slider(
|
723 |
+
label="Controlnet Conditioning Scale",
|
724 |
+
minimum=0.1,
|
725 |
+
maximum=1.5,
|
726 |
+
step=0.1,
|
727 |
+
value=0.6,
|
728 |
+
)
|
729 |
+
seed_upscale = gr.Slider(
|
730 |
+
label="Seed",
|
731 |
+
minimum=0,
|
732 |
+
maximum=MAX_SEED,
|
733 |
+
step=1,
|
734 |
+
value=42,
|
735 |
+
)
|
736 |
+
randomize_seed_upscale = gr.Checkbox(label="Randomize seed", value=True)
|
737 |
+
with gr.Row():
|
738 |
+
upscale_button = gr.Button("Upscale", variant="primary")
|
739 |
+
|
740 |
+
upscale_button.click(
|
741 |
+
infer,
|
742 |
+
inputs=[
|
743 |
+
seed_upscale,
|
744 |
+
randomize_seed_upscale,
|
745 |
+
input_image_upscale,
|
746 |
+
num_inference_steps_upscale,
|
747 |
+
upscale_factor,
|
748 |
+
controlnet_conditioning_scale,
|
749 |
+
],
|
750 |
+
outputs=result_upscale,
|
751 |
+
)
|
752 |
|
753 |
app.queue()
|
754 |
+
app.launch()
|