Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,9 @@ from gradio_imageslider import ImageSlider
|
|
20 |
import numpy as np
|
21 |
import warnings
|
22 |
|
|
|
|
|
|
|
23 |
# 번역 모델 로드
|
24 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
25 |
|
@@ -34,21 +37,16 @@ with open('loras.json', 'r') as f:
|
|
34 |
# Initialize the base model
|
35 |
dtype = torch.bfloat16
|
36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
-
base_model = "black-forest-labs/FLUX.1-dev"
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
43 |
-
repo_type="model",
|
44 |
-
ignore_patterns=["*.md", "*..gitattributes"],
|
45 |
-
local_dir="FLUX.1-dev",
|
46 |
-
token=huggingface_token, # type a new token-id.
|
47 |
-
)
|
48 |
|
|
|
49 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
50 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
51 |
-
|
|
|
52 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
53 |
base_model,
|
54 |
vae=good_vae,
|
@@ -60,14 +58,25 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
60 |
torch_dtype=dtype
|
61 |
)
|
62 |
|
63 |
-
#
|
64 |
controlnet = FluxControlNetModel.from_pretrained(
|
65 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
66 |
).to(device)
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
-
|
|
|
|
|
71 |
|
72 |
MAX_SEED = 2**32 - 1
|
73 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
|
|
20 |
import numpy as np
|
21 |
import warnings
|
22 |
|
23 |
+
|
24 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
25 |
+
|
26 |
# 번역 모델 로드
|
27 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
28 |
|
|
|
37 |
# Initialize the base model
|
38 |
dtype = torch.bfloat16
|
39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
40 |
|
41 |
+
# 공통 FLUX 모델 로드
|
42 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
43 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# LoRA를 위한 설정
|
46 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
47 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
48 |
+
|
49 |
+
# Image-to-Image 파이프라인 설정
|
50 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
51 |
base_model,
|
52 |
vae=good_vae,
|
|
|
58 |
torch_dtype=dtype
|
59 |
)
|
60 |
|
61 |
+
# Upscale을 위한 ControlNet 설정
|
62 |
controlnet = FluxControlNetModel.from_pretrained(
|
63 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
64 |
).to(device)
|
65 |
+
|
66 |
+
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
67 |
+
pipe_upscale = FluxControlNetPipeline(
|
68 |
+
vae=pipe.vae,
|
69 |
+
text_encoder=pipe.text_encoder,
|
70 |
+
tokenizer=pipe.tokenizer,
|
71 |
+
unet=pipe.unet,
|
72 |
+
scheduler=pipe.scheduler,
|
73 |
+
safety_checker=pipe.safety_checker,
|
74 |
+
feature_extractor=pipe.feature_extractor,
|
75 |
+
controlnet=controlnet
|
76 |
)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
|
81 |
MAX_SEED = 2**32 - 1
|
82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|