openfree commited on
Commit
a3102eb
·
verified ·
1 Parent(s): d92c549

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -21
app.py CHANGED
@@ -43,11 +43,12 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
43
 
44
  # 공통 FLUX 모델 로드
45
  base_model = "black-forest-labs/FLUX.1-dev"
46
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
 
47
 
48
  # LoRA를 위한 설정
49
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
50
- good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
51
 
52
  # Image-to-Image 파이프라인 설정
53
  pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
@@ -58,30 +59,26 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
58
  tokenizer=pipe.tokenizer,
59
  text_encoder_2=pipe.text_encoder_2,
60
  tokenizer_2=pipe.tokenizer_2,
61
- torch_dtype=dtype
62
- ).to(device)
 
63
 
64
  # Upscale을 위한 ControlNet 설정
65
  controlnet = FluxControlNetModel.from_pretrained(
66
- "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
67
- ).to(device)
68
 
69
  # Upscale 파이프라인 설정 (기존 pipe 재사용)
70
  pipe_upscale = FluxControlNetPipeline(
71
  vae=pipe.vae,
72
  text_encoder=pipe.text_encoder,
73
- text_encoder_2=pipe.text_encoder_2, # 추가
74
  tokenizer=pipe.tokenizer,
75
- tokenizer_2=pipe.tokenizer_2, # 추가
76
  transformer=pipe.transformer,
77
  scheduler=pipe.scheduler,
78
  controlnet=controlnet
79
- ).to(device)
80
-
81
-
82
-
83
-
84
-
85
 
86
  MAX_SEED = 2**32 - 1
87
  MAX_PIXEL_BUDGET = 1024 * 1024
@@ -586,16 +583,14 @@ def infer_upscale(
586
  gr.Info("Upscaling image...")
587
  # 모든 텐서를 동일한 디바이스로 이동
588
  pipe_upscale.to(device)
589
- control_image = control_image.to(device)
590
 
591
  image = pipe_upscale(
592
  prompt="",
593
- control_image=control_image,
594
  controlnet_conditioning_scale=controlnet_conditioning_scale,
595
  num_inference_steps=num_inference_steps,
596
  guidance_scale=3.5,
597
- height=control_image.size[1],
598
- width=control_image.size[0],
599
  generator=generator,
600
  ).images[0]
601
 
@@ -610,11 +605,11 @@ def infer_upscale(
610
  return image, seed
611
  except Exception as e:
612
  print(f"Error in infer_upscale: {str(e)}")
613
- return None, seed
614
 
615
  def check_upscale_input(input_image, *args):
616
  if input_image is None:
617
- raise gr.Error("Please provide an input image for upscaling.")
618
  return input_image, *args
619
 
620
  with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
 
43
 
44
  # 공통 FLUX 모델 로드
45
  base_model = "black-forest-labs/FLUX.1-dev"
46
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, low_cpu_mem_usage=True)
47
+ pipe.to(device)
48
 
49
  # LoRA를 위한 설정
50
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype, low_cpu_mem_usage=True)
51
+ good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, low_cpu_mem_usage=True)
52
 
53
  # Image-to-Image 파이프라인 설정
54
  pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
 
59
  tokenizer=pipe.tokenizer,
60
  text_encoder_2=pipe.text_encoder_2,
61
  tokenizer_2=pipe.tokenizer_2,
62
+ torch_dtype=dtype,
63
+ low_cpu_mem_usage=True
64
+ )
65
 
66
  # Upscale을 위한 ControlNet 설정
67
  controlnet = FluxControlNetModel.from_pretrained(
68
+ "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True
69
+ )
70
 
71
  # Upscale 파이프라인 설정 (기존 pipe 재사용)
72
  pipe_upscale = FluxControlNetPipeline(
73
  vae=pipe.vae,
74
  text_encoder=pipe.text_encoder,
75
+ text_encoder_2=pipe.text_encoder_2,
76
  tokenizer=pipe.tokenizer,
77
+ tokenizer_2=pipe.tokenizer_2,
78
  transformer=pipe.transformer,
79
  scheduler=pipe.scheduler,
80
  controlnet=controlnet
81
+ )
 
 
 
 
 
82
 
83
  MAX_SEED = 2**32 - 1
84
  MAX_PIXEL_BUDGET = 1024 * 1024
 
583
  gr.Info("Upscaling image...")
584
  # 모든 텐서를 동일한 디바이스로 이동
585
  pipe_upscale.to(device)
586
+ control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().to(device)
587
 
588
  image = pipe_upscale(
589
  prompt="",
590
+ image=control_image,
591
  controlnet_conditioning_scale=controlnet_conditioning_scale,
592
  num_inference_steps=num_inference_steps,
593
  guidance_scale=3.5,
 
 
594
  generator=generator,
595
  ).images[0]
596
 
 
605
  return image, seed
606
  except Exception as e:
607
  print(f"Error in infer_upscale: {str(e)}")
608
+ return gr.Error(f"Upscaling failed: {str(e)}"), seed
609
 
610
  def check_upscale_input(input_image, *args):
611
  if input_image is None:
612
+ return gr.Error("Please provide an input image for upscaling."), *args
613
  return input_image, *args
614
 
615
  with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app: