|
import os |
|
import subprocess |
|
from typing import Union |
|
from huggingface_hub import whoami, HfApi |
|
from fastapi import FastAPI |
|
from starlette.middleware.sessions import SessionMiddleware |
|
import sys |
|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
import uuid |
|
import shutil |
|
import json |
|
import yaml |
|
from slugify import slugify |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import numpy as np |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
is_spaces = True if os.environ.get("SPACE_ID") else False |
|
|
|
|
|
app = FastAPI() |
|
app.add_middleware(SessionMiddleware, secret_key="your-secret-key") |
|
|
|
|
|
MAX_IMAGES = 150 |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if not HF_TOKEN: |
|
raise ValueError("HF_TOKEN environment variable is not set") |
|
|
|
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN |
|
|
|
|
|
api = HfApi(token=HF_TOKEN) |
|
|
|
|
|
def get_default_train_config(lora_name, username, trigger_word=None): |
|
"""Generate a default training configuration""" |
|
slugged_lora_name = slugify(lora_name) |
|
|
|
config = { |
|
"config": { |
|
"name": slugged_lora_name, |
|
"process": [{ |
|
"model": { |
|
"name_or_path": "black-forest-labs/FLUX.1-dev", |
|
"assistant_lora_path": None, |
|
"low_vram": False, |
|
}, |
|
"network": { |
|
"linear": 16, |
|
"linear_alpha": 16 |
|
}, |
|
"train": { |
|
"skip_first_sample": True, |
|
"steps": 1000, |
|
"lr": 4e-4, |
|
"disable_sampling": False |
|
}, |
|
"datasets": [{ |
|
"folder_path": "", |
|
}], |
|
"save": { |
|
"push_to_hub": True, |
|
"hf_repo_id": f"{username}/{slugged_lora_name}", |
|
"hf_private": True, |
|
"hf_token": HF_TOKEN |
|
}, |
|
"sample": { |
|
"sample_steps": 28, |
|
"sample_every": 1000, |
|
"prompts": [] |
|
} |
|
}] |
|
} |
|
} |
|
|
|
if trigger_word: |
|
config["config"]["process"][0]["trigger_word"] = trigger_word |
|
|
|
return config |
|
|
|
|
|
def load_captioning(uploaded_files, concept_sentence): |
|
"""Load images and prepare captioning UI""" |
|
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')] |
|
txt_files = [file for file in uploaded_files if file.endswith('.txt')] |
|
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files} |
|
updates = [] |
|
|
|
if len(uploaded_images) <= 1: |
|
raise gr.Error( |
|
"Please upload at least 2 images to train your model (the ideal number is between 4-30)" |
|
) |
|
elif len(uploaded_images) > MAX_IMAGES: |
|
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training") |
|
|
|
|
|
updates.append(gr.update(visible=True)) |
|
|
|
|
|
for i in range(1, MAX_IMAGES + 1): |
|
visible = i <= len(uploaded_images) |
|
|
|
updates.append(gr.update(visible=visible)) |
|
|
|
image_value = uploaded_images[i - 1] if visible else None |
|
updates.append(gr.update(value=image_value, visible=visible)) |
|
|
|
corresponding_caption = False |
|
if image_value: |
|
base_name = os.path.splitext(os.path.basename(image_value))[0] |
|
if base_name in txt_files_dict: |
|
with open(txt_files_dict[base_name], 'r') as file: |
|
corresponding_caption = file.read() |
|
|
|
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None |
|
updates.append(gr.update(value=text_value, visible=visible)) |
|
|
|
|
|
updates.append(gr.update(visible=True)) |
|
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}')) |
|
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}")) |
|
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall")) |
|
|
|
return updates |
|
|
|
def hide_captioning(): |
|
"""Hide captioning UI elements""" |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) |
|
|
|
def create_dataset(images, *captions): |
|
"""Create dataset directory with images and captions""" |
|
destination_folder = str(f"datasets/{uuid.uuid4()}") |
|
if not os.path.exists(destination_folder): |
|
os.makedirs(destination_folder) |
|
|
|
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl") |
|
with open(jsonl_file_path, "a") as jsonl_file: |
|
for index, image in enumerate(images): |
|
if image: |
|
new_image_path = shutil.copy(image, destination_folder) |
|
caption = captions[index] |
|
file_name = os.path.basename(new_image_path) |
|
data = {"file_name": file_name, "prompt": caption} |
|
jsonl_file.write(json.dumps(data) + "\n") |
|
|
|
return destination_folder |
|
|
|
def run_captioning(images, concept_sentence, *captions): |
|
"""Run automatic captioning using Microsoft Florence model""" |
|
try: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True |
|
).to(device) |
|
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True) |
|
|
|
captions = list(captions) |
|
for i, image_path in enumerate(images): |
|
if not image_path: |
|
continue |
|
|
|
if isinstance(image_path, str): |
|
try: |
|
image = Image.open(image_path).convert("RGB") |
|
except Exception as e: |
|
print(f"Error opening image {image_path}: {e}") |
|
continue |
|
|
|
prompt = "<DETAILED_CAPTION>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) |
|
|
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
num_beams=3 |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, task=prompt, image_size=(image.width, image.height) |
|
) |
|
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "") |
|
if concept_sentence: |
|
caption_text = f"{caption_text} [trigger]" |
|
|
|
captions[i] = caption_text |
|
yield captions |
|
|
|
|
|
model.to("cpu") |
|
del model |
|
del processor |
|
torch.cuda.empty_cache() |
|
|
|
except Exception as e: |
|
print(f"Error in captioning: {e}") |
|
raise gr.Error(f"Captioning failed: {str(e)}") |
|
|
|
def update_pricing(steps): |
|
"""Update estimated cost based on training steps""" |
|
try: |
|
seconds_per_iteration = 7.54 |
|
total_seconds = (steps * seconds_per_iteration) + 240 |
|
cost_per_second = 0.80/60/60 |
|
cost = round(cost_per_second * total_seconds, 2) |
|
cost_preview = f'''To train this LoRA, a paid L4 GPU will be used during training. |
|
### Estimated to take <b>~{round(int(total_seconds)/60, 2)} minutes</b> with your current settings <small>({int(steps)} iterations)</small>''' |
|
return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True) |
|
except: |
|
return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True) |
|
|
|
def run_training_process(config_path): |
|
"""Run the actual training process""" |
|
try: |
|
|
|
|
|
|
|
|
|
script_path = os.path.join(os.getcwd(), "direct_train_lora.py") |
|
with open(script_path, "w") as f: |
|
f.write(""" |
|
import os |
|
import sys |
|
import yaml |
|
import torch |
|
from peft import LoraConfig, get_peft_model |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer |
|
from datasets import load_dataset |
|
import json |
|
|
|
def train_lora(config_path): |
|
# Load config |
|
with open(config_path, 'r') as f: |
|
config = yaml.safe_load(f) |
|
|
|
process_config = config['config']['process'][0] |
|
|
|
# Get basic parameters |
|
model_name = process_config['model']['name_or_path'] |
|
lora_rank = process_config['network']['linear'] |
|
steps = process_config['train']['steps'] |
|
lr = process_config['train']['lr'] |
|
dataset_path = process_config['datasets'][0]['folder_path'] |
|
repo_id = process_config['save']['hf_repo_id'] |
|
hf_token = process_config['save']['hf_token'] |
|
|
|
# Load dataset |
|
dataset = [] |
|
with open(os.path.join(dataset_path, "metadata.jsonl"), 'r') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
image_path = os.path.join(dataset_path, data['file_name']) |
|
prompt = data['prompt'] |
|
dataset.append({"image_path": image_path, "text": prompt}) |
|
|
|
# Load base model |
|
print(f"Loading model {model_name}") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
use_auth_token=hf_token |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) |
|
|
|
# Configure LoRA |
|
lora_config = LoraConfig( |
|
r=lora_rank, |
|
lora_alpha=lora_rank, |
|
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM" |
|
) |
|
|
|
# Apply LoRA |
|
model = get_peft_model(model, lora_config) |
|
|
|
# Training parameters |
|
training_args = TrainingArguments( |
|
output_dir=f"./lora_train/{repo_id.split('/')[-1]}", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=4, |
|
learning_rate=lr, |
|
max_steps=steps, |
|
fp16=True, |
|
logging_steps=10, |
|
save_steps=steps // 2, |
|
push_to_hub=True, |
|
hub_model_id=repo_id, |
|
hub_token=hf_token, |
|
) |
|
|
|
# Simple dataset preparation |
|
def process_batch(examples): |
|
return tokenizer( |
|
examples["text"], |
|
padding="max_length", |
|
truncation=True, |
|
max_length=256 |
|
) |
|
|
|
# Convert dataset to huggingface format |
|
train_dataset = load_dataset('json', data_files={'train': dataset_path + '/metadata.jsonl'})['train'] |
|
|
|
# Set up trainer |
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
data_collator=lambda data: {'input_ids': torch.stack([f['input_ids'] for f in data]), |
|
'attention_mask': torch.stack([f['attention_mask'] for f in data])}, |
|
) |
|
|
|
# Train |
|
print("Starting training...") |
|
trainer.train() |
|
|
|
# Save and push to hub |
|
model.save_pretrained(f"./lora_final/{repo_id.split('/')[-1]}") |
|
tokenizer.save_pretrained(f"./lora_final/{repo_id.split('/')[-1]}") |
|
|
|
if process_config['save']['push_to_hub']: |
|
model.push_to_hub(repo_id, use_auth_token=hf_token) |
|
tokenizer.push_to_hub(repo_id, use_auth_token=hf_token) |
|
|
|
print(f"Training completed! Model saved to {repo_id}") |
|
return repo_id |
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) > 1: |
|
train_lora(sys.argv[1]) |
|
else: |
|
print("Please provide config path") |
|
""") |
|
|
|
result = subprocess.run([sys.executable, script_path, config_path], |
|
capture_output=True, text=True, check=True) |
|
print(result.stdout) |
|
if result.returncode != 0: |
|
raise Exception(f"Training script failed: {result.stderr}") |
|
|
|
|
|
with open(config_path, "r") as f: |
|
config = yaml.safe_load(f) |
|
repo_id = config["config"]["process"][0]["save"]["hf_repo_id"] |
|
|
|
return repo_id |
|
except Exception as e: |
|
raise Exception(f"Training process failed: {str(e)}") |
|
|
|
def start_training( |
|
lora_name, |
|
concept_sentence, |
|
which_model, |
|
steps, |
|
lr, |
|
rank, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
use_more_advanced_options, |
|
more_advanced_options, |
|
): |
|
"""Start the LoRA training process""" |
|
if not lora_name: |
|
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.") |
|
|
|
try: |
|
username = whoami()["name"] |
|
except: |
|
raise gr.Error("Failed to get username. Please check your HF_TOKEN.") |
|
|
|
print("Started training") |
|
slugged_lora_name = slugify(lora_name) |
|
|
|
|
|
config = get_default_train_config(lora_name, username, concept_sentence) |
|
|
|
|
|
config["config"]["process"][0]["train"]["steps"] = int(steps) |
|
config["config"]["process"][0]["train"]["lr"] = float(lr) |
|
config["config"]["process"][0]["network"]["linear"] = int(rank) |
|
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank) |
|
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder |
|
|
|
|
|
if sample_1 or sample_2 or sample_3: |
|
config["config"]["process"][0]["sample"]["prompts"] = [] |
|
if sample_1: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_1) |
|
if sample_2: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_2) |
|
if sample_3: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_3) |
|
else: |
|
config["config"]["process"][0]["train"]["disable_sampling"] = True |
|
|
|
|
|
if use_more_advanced_options: |
|
try: |
|
more_advanced_options_dict = yaml.safe_load(more_advanced_options) |
|
def recursive_update(d, u): |
|
for k, v in u.items(): |
|
if isinstance(v, dict) and v: |
|
d[k] = recursive_update(d.get(k, {}), v) |
|
else: |
|
d[k] = v |
|
return d |
|
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict) |
|
except Exception as e: |
|
raise gr.Error(f"Error in advanced options: {str(e)}") |
|
|
|
try: |
|
|
|
os.makedirs("tmp", exist_ok=True) |
|
config_path = f"tmp/{uuid.uuid4()}-{slugged_lora_name}.yaml" |
|
with open(config_path, "w") as f: |
|
yaml.dump(config, f) |
|
|
|
|
|
repo_id = run_training_process(config_path) |
|
|
|
return f"""# Training completed successfully! |
|
## Your model is available at: <a href='https://huggingface.co/{repo_id}'>{repo_id}</a>""" |
|
except Exception as e: |
|
raise gr.Error(f"Training failed: {str(e)}") |
|
|
|
|
|
custom_theme = gr.themes.Base( |
|
primary_hue="indigo", |
|
secondary_hue="slate", |
|
neutral_hue="slate", |
|
).set( |
|
background_fill_primary="#1a1a1a", |
|
background_fill_secondary="#2d2d2d", |
|
border_color_primary="#404040", |
|
|
|
button_primary_background_fill="#4F46E5", |
|
button_primary_background_fill_dark="#4338CA", |
|
button_primary_background_fill_hover="#6366F1", |
|
button_primary_border_color="#4F46E5", |
|
button_primary_border_color_dark="#4338CA", |
|
button_primary_text_color="white", |
|
button_primary_text_color_dark="white", |
|
|
|
button_secondary_background_fill="#374151", |
|
button_secondary_background_fill_dark="#1F2937", |
|
button_secondary_background_fill_hover="#4B5563", |
|
button_secondary_text_color="white", |
|
button_secondary_text_color_dark="white", |
|
|
|
block_background_fill="#2d2d2d", |
|
block_background_fill_dark="#1F2937", |
|
block_label_background_fill="#4F46E5", |
|
block_label_background_fill_dark="#4338CA", |
|
block_label_text_color="white", |
|
block_label_text_color_dark="white", |
|
block_title_text_color="white", |
|
block_title_text_color_dark="white", |
|
|
|
input_background_fill="#374151", |
|
input_background_fill_dark="#1F2937", |
|
input_border_color="#4B5563", |
|
input_border_color_dark="#374151", |
|
input_placeholder_color="#9CA3AF", |
|
input_placeholder_color_dark="#6B7280", |
|
) |
|
|
|
css = ''' |
|
/* Base styles */ |
|
h1 { |
|
font-size: 2.5em; |
|
text-align: center; |
|
margin-bottom: 0.5em; |
|
color: white !important; |
|
} |
|
|
|
h3 { |
|
margin-top: 0; |
|
font-size: 1.2em; |
|
color: white !important; |
|
} |
|
|
|
/* Ensure all text is white */ |
|
.markdown, .markdown h1, .markdown h2, .markdown h3, |
|
.markdown h4, .markdown h5, .markdown h6, .markdown p, |
|
label, .label-text, .gradio-radio label span, .gradio-checkbox label span, |
|
input, textarea, .gradio-textbox input, .gradio-textbox textarea, |
|
.gradio-number input, select, option, button { |
|
color: white !important; |
|
} |
|
|
|
/* Input style improvements */ |
|
input[type="text"], textarea, .input-text, .input-textarea { |
|
background-color: #374151 !important; |
|
border-color: #4B5563 !important; |
|
color: white !important; |
|
} |
|
|
|
/* Button styling */ |
|
button { |
|
transition: all 0.3s ease; |
|
} |
|
|
|
button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 4px 6px rgba(0,0,0,0.1); |
|
} |
|
|
|
/* Image area */ |
|
.image-upload-area { |
|
border: 2px dashed #4B5563; |
|
border-radius: 12px; |
|
padding: 20px; |
|
text-align: center; |
|
margin-bottom: 20px; |
|
} |
|
|
|
/* Caption rows */ |
|
.caption-row { |
|
display: flex; |
|
align-items: center; |
|
margin-bottom: 10px; |
|
gap: 10px; |
|
} |
|
''' |
|
|
|
|
|
with gr.Blocks(theme=custom_theme, css=css) as demo: |
|
gr.Markdown( |
|
"""# ๐ Gini LoRA ํ์ต |
|
### 1) LoRA ์ด๋ฆ ์
๋ ฅ 2) ํธ๋ฆฌ๊ฑฐ ๋จ์ด ์
๋ ฅ 3) ์ด๋ฏธ์ง ์
๋ก๋(2-30์ฅ ๊ถ์ฅ) 4) ๋น์ ์ธ์ LLM ๋ผ๋ฒจ๋ง 5) START ํด๋ฆญ""", |
|
elem_classes=["markdown"] |
|
) |
|
|
|
with gr.Tab("Train"): |
|
with gr.Column(): |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
lora_name = gr.Textbox( |
|
label="LoRA ์ด๋ฆ", |
|
info="๊ณ ์ ํ ์ด๋ฆ์ด์ด์ผ ํฉ๋๋ค", |
|
placeholder="์: Persian Miniature Style, Cat Toy" |
|
) |
|
concept_sentence = gr.Textbox( |
|
label="ํธ๋ฆฌ๊ฑฐ ๋จ์ด/๋ฌธ์ฅ", |
|
info="์ฌ์ฉํ ํธ๋ฆฌ๊ฑฐ ๋จ์ด๋ ๋ฌธ์ฅ", |
|
placeholder="p3rs0n์ด๋ trtcrd๊ฐ์ ํน์ดํ ๋จ์ด, ๋๋ 'in the style of CNSTLL'๊ฐ์ ๋ฌธ์ฅ" |
|
) |
|
|
|
model_warning = gr.Markdown(visible=False) |
|
which_model = gr.Radio( |
|
["๊ณ ํ๋ฆฌํฐ ๋ง์ถค ํ์ต ๋ชจ๋ธ"], |
|
label="๊ธฐ๋ณธ ๋ชจ๋ธ", |
|
value="๊ณ ํ๋ฆฌํฐ ๋ง์ถค ํ์ต ๋ชจ๋ธ" |
|
) |
|
|
|
|
|
with gr.Group(visible=True, elem_classes="image-upload-area") as image_upload: |
|
with gr.Row(): |
|
images = gr.File( |
|
file_types=["image", ".txt"], |
|
label="Upload your images", |
|
file_count="multiple", |
|
interactive=True, |
|
visible=True, |
|
scale=1, |
|
) |
|
with gr.Column(scale=3, visible=False) as captioning_area: |
|
with gr.Column(): |
|
gr.Markdown( |
|
"""# ์ด๋ฏธ์ง ๋ผ๋ฒจ๋ง |
|
<p style="margin-top:0"> ๋น์ ์ธ์ LLM์ด ์ด๋ฏธ์ง๋ฅผ ์ธ์ํ์ฌ ์๋์ผ๋ก ๋ผ๋ฒจ๋ง(์ด๋ฏธ์ง ์ธ์์ ์ํ ํ์ ์ค๋ช
). [trigger] 'ํธ๋ฆฌ๊ฑฐ ์๋'๋ ํ์ตํ ๋ชจ๋ธ์ ์คํํ๋ ๊ณ ์ ํค๊ฐ</p> |
|
""", elem_classes="group_padding") |
|
do_captioning = gr.Button("๋น์ ์ธ์ LLM ์๋ ๋ผ๋ฒจ๋ง") |
|
output_components = [captioning_area] |
|
caption_list = [] |
|
for i in range(1, MAX_IMAGES + 1): |
|
locals()[f"captioning_row_{i}"] = gr.Row(visible=False) |
|
with locals()[f"captioning_row_{i}"]: |
|
locals()[f"image_{i}"] = gr.Image( |
|
type="filepath", |
|
width=111, |
|
height=111, |
|
min_width=111, |
|
interactive=False, |
|
scale=2, |
|
show_label=False, |
|
show_share_button=False, |
|
show_download_button=False, |
|
) |
|
locals()[f"caption_{i}"] = gr.Textbox( |
|
label=f"Caption {i}", scale=15, interactive=True |
|
) |
|
|
|
output_components.append(locals()[f"captioning_row_{i}"]) |
|
output_components.append(locals()[f"image_{i}"]) |
|
output_components.append(locals()[f"caption_{i}"]) |
|
caption_list.append(locals()[f"caption_{i}"]) |
|
|
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1) |
|
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6) |
|
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4) |
|
with gr.Accordion("Even more advanced options", open=False): |
|
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False) |
|
more_advanced_options = gr.Code( |
|
value=""" |
|
device: cuda:0 |
|
model: |
|
is_flux: true |
|
quantize: true |
|
network: |
|
linear: 16 |
|
linear_alpha: 16 |
|
type: lora |
|
sample: |
|
guidance_scale: 3.5 |
|
height: 1024 |
|
neg: '' |
|
sample_steps: 28 |
|
sampler: flowmatch |
|
seed: 42 |
|
walk_seed: true |
|
width: 1024 |
|
save: |
|
dtype: float16 |
|
hf_private: true |
|
max_step_saves_to_keep: 4 |
|
push_to_hub: true |
|
save_every: 10000 |
|
train: |
|
batch_size: 1 |
|
dtype: bf16 |
|
ema_config: |
|
ema_decay: 0.99 |
|
use_ema: true |
|
gradient_accumulation_steps: 1 |
|
gradient_checkpointing: true |
|
noise_scheduler: flowmatch |
|
optimizer: adamw8bit |
|
train_text_encoder: false |
|
train_unet: true |
|
""", |
|
language="yaml" |
|
) |
|
|
|
|
|
with gr.Accordion("Sample prompts (optional)", visible=False) as sample: |
|
gr.Markdown( |
|
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)" |
|
) |
|
sample_1 = gr.Textbox(label="Test prompt 1") |
|
sample_2 = gr.Textbox(label="Test prompt 2") |
|
sample_3 = gr.Textbox(label="Test prompt 3") |
|
|
|
|
|
with gr.Group(visible=False) as cost_preview: |
|
cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding") |
|
payment_update = gr.Button("I have set up a payment method", visible=False) |
|
|
|
|
|
output_components.append(sample) |
|
output_components.append(sample_1) |
|
output_components.append(sample_2) |
|
output_components.append(sample_3) |
|
|
|
|
|
start = gr.Button("START ํด๋ฆญ ('์ฝ 15-20๋ถ ํ ํ์ต์ด ์ข
๋ฃ๋๊ณ ์๋ฃ ๋ฉ์์ง๊ฐ ์ถ๋ ฅ๋ฉ๋๋ค')", visible=False) |
|
|
|
|
|
progress_area = gr.Markdown("") |
|
|
|
|
|
dataset_folder = gr.State() |
|
|
|
|
|
images.upload( |
|
load_captioning, |
|
inputs=[images, concept_sentence], |
|
outputs=output_components |
|
).then( |
|
update_pricing, |
|
inputs=[steps], |
|
outputs=[cost_preview, cost_preview_info, payment_update, start] |
|
) |
|
|
|
images.clear( |
|
hide_captioning, |
|
outputs=[captioning_area, cost_preview, sample, start] |
|
) |
|
|
|
images.delete( |
|
load_captioning, |
|
inputs=[images, concept_sentence], |
|
outputs=output_components |
|
).then( |
|
update_pricing, |
|
inputs=[steps], |
|
outputs=[cost_preview, cost_preview_info, payment_update, start] |
|
) |
|
|
|
steps.change( |
|
update_pricing, |
|
inputs=[steps], |
|
outputs=[cost_preview, cost_preview_info, payment_update, start] |
|
) |
|
|
|
start.click( |
|
fn=create_dataset, |
|
inputs=[images] + caption_list, |
|
outputs=dataset_folder |
|
).then( |
|
fn=start_training, |
|
inputs=[ |
|
lora_name, |
|
concept_sentence, |
|
which_model, |
|
steps, |
|
lr, |
|
rank, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
use_more_advanced_options, |
|
more_advanced_options |
|
], |
|
outputs=progress_area, |
|
) |
|
|
|
do_captioning.click( |
|
fn=run_captioning, |
|
inputs=[images, concept_sentence] + caption_list, |
|
outputs=caption_list |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860, auth=("gini", "pick"), show_error=True) |