|
import os |
|
import subprocess |
|
from typing import Union |
|
from huggingface_hub import whoami, HfApi |
|
from fastapi import FastAPI |
|
from starlette.middleware.sessions import SessionMiddleware |
|
import sys |
|
|
|
|
|
if not os.path.exists("ai-toolkit"): |
|
subprocess.run("git clone https://github.com/ostris/ai-toolkit.git", shell=True) |
|
subprocess.run("cd ai-toolkit && git submodule update --init --recursive", shell=True) |
|
|
|
|
|
toolkit_path = os.path.join(os.getcwd(), "ai-toolkit") |
|
sys.path.append(toolkit_path) |
|
|
|
|
|
subprocess.run("pip install -r ai-toolkit/requirements.txt", shell=True) |
|
|
|
|
|
is_spaces = True if os.environ.get("SPACE_ID") else False |
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
import sys |
|
|
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
|
|
sys.path.insert(0, os.getcwd()) |
|
|
|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
import uuid |
|
import shutil |
|
import json |
|
import yaml |
|
from slugify import slugify |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
|
|
app = FastAPI() |
|
app.add_middleware(SessionMiddleware, secret_key="your-secret-key") |
|
|
|
if not is_spaces: |
|
sys.path.insert(0, "ai-toolkit") |
|
from toolkit.job import get_job |
|
gr.OAuthProfile = None |
|
gr.OAuthToken = None |
|
|
|
|
|
MAX_IMAGES = 150 |
|
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if not HF_TOKEN: |
|
raise ValueError("HF_TOKEN environment variable is not set") |
|
|
|
|
|
if is_spaces: |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
import spaces |
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN |
|
|
|
|
|
api = HfApi(token=HF_TOKEN) |
|
|
|
def load_captioning(uploaded_files, concept_sentence): |
|
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')] |
|
txt_files = [file for file in uploaded_files if file.endswith('.txt')] |
|
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files} |
|
updates = [] |
|
if len(uploaded_images) <= 1: |
|
raise gr.Error( |
|
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)" |
|
) |
|
elif len(uploaded_images) > MAX_IMAGES: |
|
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training") |
|
|
|
|
|
updates.append(gr.update(visible=True)) |
|
|
|
for i in range(1, MAX_IMAGES + 1): |
|
|
|
visible = i <= len(uploaded_images) |
|
|
|
|
|
updates.append(gr.update(visible=visible)) |
|
|
|
|
|
image_value = uploaded_images[i - 1] if visible else None |
|
updates.append(gr.update(value=image_value, visible=visible)) |
|
|
|
corresponding_caption = False |
|
if(image_value): |
|
base_name = os.path.splitext(os.path.basename(image_value))[0] |
|
print(base_name) |
|
print(image_value) |
|
if base_name in txt_files_dict: |
|
print("entrou") |
|
with open(txt_files_dict[base_name], 'r') as file: |
|
corresponding_caption = file.read() |
|
|
|
|
|
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None |
|
updates.append(gr.update(value=text_value, visible=visible)) |
|
|
|
|
|
updates.append(gr.update(visible=True)) |
|
|
|
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}')) |
|
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}")) |
|
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall")) |
|
return updates |
|
|
|
def hide_captioning(): |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) |
|
|
|
def create_dataset(*inputs): |
|
print("Creating dataset") |
|
images = inputs[0] |
|
destination_folder = str(f"datasets/{uuid.uuid4()}") |
|
if not os.path.exists(destination_folder): |
|
os.makedirs(destination_folder) |
|
|
|
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl") |
|
with open(jsonl_file_path, "a") as jsonl_file: |
|
for index, image in enumerate(images): |
|
new_image_path = shutil.copy(image, destination_folder) |
|
|
|
original_caption = inputs[index + 1] |
|
file_name = os.path.basename(new_image_path) |
|
|
|
data = {"file_name": file_name, "prompt": original_caption} |
|
|
|
jsonl_file.write(json.dumps(data) + "\n") |
|
|
|
return destination_folder |
|
|
|
|
|
def run_captioning(images, concept_sentence, *captions): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True |
|
).to(device) |
|
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True) |
|
|
|
captions = list(captions) |
|
for i, image_path in enumerate(images): |
|
print(captions[i]) |
|
if isinstance(image_path, str): |
|
image = Image.open(image_path).convert("RGB") |
|
|
|
prompt = "<DETAILED_CAPTION>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) |
|
|
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, task=prompt, image_size=(image.width, image.height) |
|
) |
|
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "") |
|
if concept_sentence: |
|
caption_text = f"{caption_text} [trigger]" |
|
captions[i] = caption_text |
|
|
|
yield captions |
|
model.to("cpu") |
|
del model |
|
del processor |
|
|
|
if is_spaces: |
|
run_captioning = spaces.GPU()(run_captioning) |
|
|
|
def recursive_update(d, u): |
|
for k, v in u.items(): |
|
if isinstance(v, dict) and v: |
|
d[k] = recursive_update(d.get(k, {}), v) |
|
else: |
|
d[k] = v |
|
return d |
|
|
|
def start_training( |
|
lora_name, |
|
concept_sentence, |
|
which_model, |
|
steps, |
|
lr, |
|
rank, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
use_more_advanced_options, |
|
more_advanced_options, |
|
): |
|
if not lora_name: |
|
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.") |
|
|
|
try: |
|
username = whoami()["name"] |
|
except: |
|
raise gr.Error("Failed to get username. Please check your HF_TOKEN.") |
|
|
|
print("Started training") |
|
slugged_lora_name = slugify(lora_name) |
|
|
|
|
|
with open("train_lora_flux_24gb.yaml", "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
|
|
config["config"]["name"] = slugged_lora_name |
|
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-dev" |
|
config["config"]["process"][0]["model"]["assistant_lora_path"] = None |
|
config["config"]["process"][0]["model"]["low_vram"] = False |
|
config["config"]["process"][0]["train"]["skip_first_sample"] = True |
|
config["config"]["process"][0]["train"]["steps"] = int(steps) |
|
config["config"]["process"][0]["train"]["lr"] = float(lr) |
|
config["config"]["process"][0]["network"]["linear"] = int(rank) |
|
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank) |
|
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder |
|
config["config"]["process"][0]["save"]["push_to_hub"] = True |
|
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}" |
|
config["config"]["process"][0]["save"]["hf_private"] = True |
|
config["config"]["process"][0]["save"]["hf_token"] = HF_TOKEN |
|
config["config"]["process"][0]["sample"]["sample_steps"] = 28 |
|
|
|
if concept_sentence: |
|
config["config"]["process"][0]["trigger_word"] = concept_sentence |
|
|
|
if sample_1 or sample_2 or sample_3: |
|
config["config"]["process"][0]["train"]["disable_sampling"] = False |
|
config["config"]["process"][0]["sample"]["sample_every"] = steps |
|
config["config"]["process"][0]["sample"]["prompts"] = [] |
|
if sample_1: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_1) |
|
if sample_2: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_2) |
|
if sample_3: |
|
config["config"]["process"][0]["sample"]["prompts"].append(sample_3) |
|
else: |
|
config["config"]["process"][0]["train"]["disable_sampling"] = True |
|
|
|
if(use_more_advanced_options): |
|
more_advanced_options_dict = yaml.safe_load(more_advanced_options) |
|
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict) |
|
print(config) |
|
|
|
try: |
|
|
|
random_config_name = str(uuid.uuid4()) |
|
os.makedirs("tmp", exist_ok=True) |
|
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml" |
|
with open(config_path, "w") as f: |
|
yaml.dump(config, f) |
|
|
|
|
|
from toolkit.job import get_job |
|
job = get_job(config_path) |
|
job.run() |
|
job.cleanup() |
|
except Exception as e: |
|
raise gr.Error(f"Training failed: {str(e)}") |
|
|
|
return f"""# Training completed successfully! |
|
## Your model is available at: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a>""" |
|
|
|
|
|
def update_pricing(steps): |
|
try: |
|
seconds_per_iteration = 7.54 |
|
total_seconds = (steps * seconds_per_iteration) + 240 |
|
cost_per_second = 0.80/60/60 |
|
cost = round(cost_per_second * total_seconds, 2) |
|
cost_preview = f'''To train this LoRA, a paid L4 GPU will be hooked under the hood during training and then removed once finished. |
|
### Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(steps)} iterations at {seconds_per_iteration}s/it)</small>''' |
|
return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True) |
|
except: |
|
return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True) |
|
|
|
|
|
|
|
def swap_base_model(model): |
|
return gr.update(visible=True) if model == "[dev] (high quality model, non-commercial license)" else gr.update(visible=False) |
|
|
|
config_yaml = ''' |
|
device: cuda:0 |
|
model: |
|
is_flux: true |
|
quantize: true |
|
network: |
|
linear: 16 #it will overcome the 'rank' parameter |
|
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like |
|
type: lora |
|
sample: |
|
guidance_scale: 3.5 |
|
height: 1024 |
|
neg: '' #doesn't work for FLUX |
|
sample_every: 1000 |
|
sample_steps: 28 |
|
sampler: flowmatch |
|
seed: 42 |
|
walk_seed: true |
|
width: 1024 |
|
save: |
|
dtype: float16 |
|
hf_private: true |
|
max_step_saves_to_keep: 4 |
|
push_to_hub: true |
|
save_every: 10000 |
|
train: |
|
batch_size: 1 |
|
dtype: bf16 |
|
ema_config: |
|
ema_decay: 0.99 |
|
use_ema: true |
|
gradient_accumulation_steps: 1 |
|
gradient_checkpointing: true |
|
noise_scheduler: flowmatch |
|
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit |
|
train_text_encoder: false #probably doesn't work for flux |
|
train_unet: true |
|
''' |
|
|
|
|
|
|
|
custom_theme = gr.themes.Base( |
|
primary_hue="indigo", |
|
secondary_hue="slate", |
|
neutral_hue="slate", |
|
).set( |
|
|
|
background_fill_primary="#1a1a1a", |
|
background_fill_secondary="#2d2d2d", |
|
border_color_primary="#404040", |
|
|
|
|
|
button_primary_background_fill="#4F46E5", |
|
button_primary_background_fill_dark="#4338CA", |
|
button_primary_background_fill_hover="#6366F1", |
|
button_primary_border_color="#4F46E5", |
|
button_primary_border_color_dark="#4338CA", |
|
button_primary_text_color="white", |
|
button_primary_text_color_dark="white", |
|
|
|
button_secondary_background_fill="#374151", |
|
button_secondary_background_fill_dark="#1F2937", |
|
button_secondary_background_fill_hover="#4B5563", |
|
button_secondary_text_color="white", |
|
button_secondary_text_color_dark="white", |
|
|
|
|
|
block_background_fill="#2d2d2d", |
|
block_background_fill_dark="#1F2937", |
|
block_label_background_fill="#4F46E5", |
|
block_label_background_fill_dark="#4338CA", |
|
block_label_text_color="white", |
|
block_label_text_color_dark="white", |
|
block_title_text_color="white", |
|
block_title_text_color_dark="white", |
|
|
|
|
|
input_background_fill="#374151", |
|
input_background_fill_dark="#1F2937", |
|
input_border_color="#4B5563", |
|
input_border_color_dark="#374151", |
|
input_placeholder_color="#9CA3AF", |
|
input_placeholder_color_dark="#6B7280", |
|
|
|
|
|
shadow_spread="8px", |
|
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.1)", |
|
|
|
|
|
panel_background_fill="#2d2d2d", |
|
panel_background_fill_dark="#1F2937", |
|
|
|
|
|
border_color_accent="#4F46E5", |
|
border_color_accent_dark="#4338CA" |
|
) |
|
|
|
css=''' |
|
/* ๊ธฐ๋ณธ ์คํ์ผ */ |
|
h1 { |
|
font-size: 3em; |
|
text-align: center; |
|
margin-bottom: 0.5em; |
|
color: white !important; |
|
} |
|
|
|
h3 { |
|
margin-top: 0; |
|
font-size: 1.2em; |
|
color: white !important; |
|
} |
|
|
|
/* Markdown ํ
์คํธ ์คํ์ผ */ |
|
.markdown { |
|
color: white !important; |
|
} |
|
|
|
.markdown h1, |
|
.markdown h2, |
|
.markdown h3, |
|
.markdown h4, |
|
.markdown h5, |
|
.markdown h6, |
|
.markdown p { |
|
color: white !important; |
|
} |
|
|
|
/* ์ปดํฌ๋ํธ ์คํ์ผ */ |
|
.container { |
|
max-width: 1200px; |
|
margin: 0 auto; |
|
padding: 20px; |
|
} |
|
|
|
/* ์
๋ ฅ ํ๋ ์คํ์ผ */ |
|
.input-group { |
|
background: var(--block-background-fill); |
|
padding: 15px; |
|
border-radius: 12px; |
|
margin-bottom: 20px; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
} |
|
|
|
/* ๋ชจ๋ ์
๋ ฅ ํ๋ ํ
์คํธ ์์ */ |
|
input, textarea, .gradio-textbox input, .gradio-textbox textarea, .gradio-number input { |
|
color: white !important; |
|
} |
|
|
|
/* ๋ผ๋ฒจ ํ
์คํธ ์คํ์ผ */ |
|
label, .label-text { |
|
color: white !important; |
|
} |
|
|
|
/* ๋ผ๋์ค ๋ฒํผ ํ
์คํธ */ |
|
.gradio-radio label span { |
|
color: white !important; |
|
} |
|
|
|
/* ์ฒดํฌ๋ฐ์ค ํ
์คํธ */ |
|
.gradio-checkbox label span { |
|
color: white !important; |
|
} |
|
|
|
/* ๋ฒํผ ์คํ์ผ */ |
|
.button { |
|
height: 40px; |
|
border-radius: 8px; |
|
transition: all 0.3s ease; |
|
color: white !important; |
|
} |
|
|
|
.button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 4px 6px rgba(0,0,0,0.1); |
|
} |
|
|
|
/* ์ด๋ฏธ์ง ์
๋ก๋ ์์ญ */ |
|
.image-upload-area { |
|
border: 2px dashed var(--input-border-color); |
|
border-radius: 12px; |
|
padding: 20px; |
|
text-align: center; |
|
margin-bottom: 20px; |
|
color: white !important; |
|
} |
|
|
|
/* ์บก์
์์ญ */ |
|
.caption-area { |
|
background: var(--block-background-fill); |
|
padding: 15px; |
|
border-radius: 12px; |
|
margin-top: 20px; |
|
color: white !important; |
|
} |
|
|
|
.caption-row { |
|
display: flex; |
|
align-items: center; |
|
margin-bottom: 10px; |
|
gap: 10px; |
|
} |
|
|
|
/* ๊ณ ๊ธ ์ต์
์์ญ */ |
|
.advanced-options { |
|
background: var(--block-background-fill); |
|
padding: 15px; |
|
border-radius: 12px; |
|
margin-top: 20px; |
|
color: white !important; |
|
} |
|
|
|
/* ์งํ ์ํ ํ์ */ |
|
.progress-area { |
|
background: var(--block-background-fill); |
|
padding: 15px; |
|
border-radius: 12px; |
|
margin-top: 20px; |
|
text-align: center; |
|
color: white !important; |
|
} |
|
|
|
/* ํ๋ ์ด์คํ๋ ํ
์คํธ */ |
|
::placeholder { |
|
color: rgba(255, 255, 255, 0.5) !important; |
|
} |
|
|
|
/* ์ฝ๋ ์๋ํฐ ํ
์คํธ */ |
|
.gradio-code { |
|
color: white !important; |
|
} |
|
|
|
/* ์์ฝ๋์ธ ํ
์คํธ */ |
|
.gradio-accordion .label-wrap { |
|
color: white !important; |
|
} |
|
|
|
/* ๋ฐ์ํ ๋์์ธ */ |
|
@media (max-width: 768px) { |
|
.caption-row { |
|
flex-direction: column; |
|
} |
|
} |
|
|
|
/* ์คํฌ๋กค๋ฐ ์คํ์ผ */ |
|
::-webkit-scrollbar { |
|
width: 8px; |
|
} |
|
|
|
::-webkit-scrollbar-track { |
|
background: var(--background-fill-primary); |
|
border-radius: 4px; |
|
} |
|
|
|
::-webkit-scrollbar-thumb { |
|
background: var(--primary-500); |
|
border-radius: 4px; |
|
} |
|
|
|
::-webkit-scrollbar-thumb:hover { |
|
background: var(--primary-600); |
|
} |
|
|
|
/* ๋ชจ๋ ํ
์คํธ ์
๋ ฅ ์์ */ |
|
.gradio-container input[type="text"], |
|
.gradio-container textarea, |
|
.gradio-container .input-text, |
|
.gradio-container .input-textarea { |
|
color: white !important; |
|
} |
|
|
|
/* ๋๋กญ๋ค์ด ํ
์คํธ */ |
|
select, option { |
|
color: white !important; |
|
} |
|
|
|
/* ๋ฒํผ ํ
์คํธ */ |
|
button { |
|
color: white !important; |
|
} |
|
''' |
|
|
|
|
|
with gr.Blocks(theme=custom_theme, css=css) as demo: |
|
|
|
gr.Markdown( |
|
"""# ๐ Gini LoRA ํ์ต |
|
### 1)LoRA ์ด๋ฆ ์์ด๋ก '์
๋ ฅ' 2)ํธ๋ฆฌ๊ฑฐ ๋จ์ด ์์ด๋ก '์
๋ ฅ' 3)๊ธฐ๋ณธ ๋ชจ๋ธ 'ํด๋ฆญ' 4)์ด๋ฏธ์ง(์ต์ 2์ฅ~์ต๋ 150์ฅ ๋ฏธ๋ง) '์
๋ก๋' 5)๋น์ ์ธ์ LLM ๋ผ๋ฒจ๋ง 'ํด๋ฆญ' 6)START ํด๋ฆญ""", |
|
elem_classes=["markdown"] |
|
) |
|
|
|
with gr.Tab("Train"): |
|
with gr.Column(elem_classes="container"): |
|
|
|
with gr.Group(elem_classes="input-group"): |
|
with gr.Row(): |
|
lora_name = gr.Textbox( |
|
label="LoRA ์ด๋ฆ", |
|
info="๊ณ ์ ํ ์ด๋ฆ์ด์ด์ผ ํฉ๋๋ค", |
|
placeholder="์: Persian Miniature Painting style, Cat Toy" |
|
) |
|
concept_sentence = gr.Textbox( |
|
label="ํธ๋ฆฌ๊ฑฐ ๋จ์ด/๋ฌธ์ฅ", |
|
info="์ฌ์ฉํ ํธ๋ฆฌ๊ฑฐ ๋จ์ด๋ ๋ฌธ์ฅ", |
|
placeholder="p3rs0n์ด๋ trtcrd๊ฐ์ ํน์ดํ ๋จ์ด, ๋๋ 'in the style of CNSTLL'๊ฐ์ ๋ฌธ์ฅ" |
|
) |
|
|
|
model_warning = gr.Markdown(visible=False) |
|
which_model = gr.Radio( |
|
["๊ณ ํ๋ฆฌํฐ ๋ง์ถค ํ์ต ๋ชจ๋ธ"], |
|
label="๊ธฐ๋ณธ ๋ชจ๋ธ", |
|
value="[dev] (high quality model)" |
|
) |
|
|
|
|
|
with gr.Group(visible=True, elem_classes="image-upload-area") as image_upload: |
|
|
|
with gr.Row(): |
|
images = gr.File( |
|
file_types=["image", ".txt"], |
|
label="Upload your images", |
|
file_count="multiple", |
|
interactive=True, |
|
visible=True, |
|
scale=1, |
|
) |
|
with gr.Column(scale=3, visible=False) as captioning_area: |
|
with gr.Column(): |
|
gr.Markdown( |
|
"""# ์ด๋ฏธ์ง ๋ผ๋ฒจ๋ง |
|
<p style="margin-top:0"> ๋น์ ์ธ์ LLM์ด ์ด๋ฏธ์ง๋ฅผ ์ธ์ํ์ฌ ์๋์ผ๋ก ๋ผ๋ฒจ๋ง(์ด๋ฏธ์ง ์ธ์์ ์ํ ํ์ ์ค๋ช
). [trigger] 'ํธ๋ฆฌ๊ฑฐ ์๋'๋ ํ์ตํ ๋ชจ๋ธ์ ์คํํ๋ ๊ณ ์ ํค๊ฐ /trigger word.</p> |
|
""", elem_classes="group_padding") |
|
do_captioning = gr.Button("๋น์ ์ธ์ LLM ์๋ ๋ผ๋ฒจ๋ง") |
|
output_components = [captioning_area] |
|
caption_list = [] |
|
for i in range(1, MAX_IMAGES + 1): |
|
locals()[f"captioning_row_{i}"] = gr.Row(visible=False) |
|
with locals()[f"captioning_row_{i}"]: |
|
locals()[f"image_{i}"] = gr.Image( |
|
type="filepath", |
|
width=111, |
|
height=111, |
|
min_width=111, |
|
interactive=False, |
|
scale=2, |
|
show_label=False, |
|
show_share_button=False, |
|
show_download_button=False, |
|
) |
|
locals()[f"caption_{i}"] = gr.Textbox( |
|
label=f"Caption {i}", scale=15, interactive=True |
|
) |
|
|
|
output_components.append(locals()[f"captioning_row_{i}"]) |
|
output_components.append(locals()[f"image_{i}"]) |
|
output_components.append(locals()[f"caption_{i}"]) |
|
caption_list.append(locals()[f"caption_{i}"]) |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1) |
|
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6) |
|
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4) |
|
with gr.Accordion("Even more advanced options", open=False): |
|
if(is_spaces): |
|
gr.Markdown("Attention: changing this parameters may make your training fail or go out-of-memory if training on Spaces. Only change settings here it if you know what you are doing. Beware that training is done in an L4 GPU with 24GB of RAM") |
|
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False) |
|
more_advanced_options = gr.Code(config_yaml, language="yaml") |
|
|
|
with gr.Accordion("Sample prompts (optional)", visible=False) as sample: |
|
gr.Markdown( |
|
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)" |
|
) |
|
sample_1 = gr.Textbox(label="Test prompt 1") |
|
sample_2 = gr.Textbox(label="Test prompt 2") |
|
sample_3 = gr.Textbox(label="Test prompt 3") |
|
with gr.Group(visible=False) as cost_preview: |
|
cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding") |
|
payment_update = gr.Button("I have set up a payment method", visible=False) |
|
output_components.append(sample) |
|
output_components.append(sample_1) |
|
output_components.append(sample_2) |
|
output_components.append(sample_3) |
|
start = gr.Button("START ํด๋ฆญ('์ฝ 25~30๋ถ ํ ํ์ต์ด ์ข
๋ฃ๋๊ณ ์๋ฃ ๋ฉ์์ง๊ฐ ์ถ๋ ฅ๋ฉ๋๋ค.)'", visible=False) |
|
progress_area = gr.Markdown("") |
|
|
|
|
|
|
|
dataset_folder = gr.State() |
|
|
|
images.upload( |
|
load_captioning, |
|
inputs=[images, concept_sentence], |
|
outputs=output_components |
|
).then( |
|
update_pricing, |
|
inputs=[steps], |
|
outputs=[cost_preview, cost_preview_info, payment_update, start] |
|
) |
|
|
|
images.clear( |
|
hide_captioning, |
|
outputs=[captioning_area, cost_preview, sample, start] |
|
) |
|
|
|
images.delete( |
|
load_captioning, |
|
inputs=[images, concept_sentence], |
|
outputs=output_components |
|
).then( |
|
update_pricing, |
|
inputs=[steps], |
|
outputs=[cost_preview, cost_preview_info, payment_update, start] |
|
) |
|
|
|
gr.on( |
|
triggers=[steps.change], |
|
fn=update_pricing, |
|
inputs=[steps], |
|
outputs=[cost_preview, cost_preview_info, payment_update, start] |
|
) |
|
|
|
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then( |
|
fn=start_training, |
|
inputs=[ |
|
lora_name, |
|
concept_sentence, |
|
which_model, |
|
steps, |
|
lr, |
|
rank, |
|
dataset_folder, |
|
sample_1, |
|
sample_2, |
|
sample_3, |
|
use_more_advanced_options, |
|
more_advanced_options |
|
], |
|
outputs=progress_area, |
|
) |
|
|
|
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860, auth=("gini", "pick"), show_error=True) |