openfree commited on
Commit
0be56af
·
verified ·
1 Parent(s): a8eed60

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -36
app.py CHANGED
@@ -457,42 +457,7 @@ with gr.Blocks(theme=theme, css=css) as demo:
457
  start = gr.Button("Start training", visible=False)
458
  progress_area = gr.Markdown("")
459
 
460
- with gr.Tab("Train on your device" if is_spaces else "Instructions"):
461
- gr.Markdown(f"""To use FLUX LoRA Ease locally with this UI, you can clone this repository (yes, HF Spaces are git repos!). You'll need ~23GB of VRAM
462
- ```bash
463
- git clone https://huggingface.co/spaces/autotrain-projects/flux-lora-ease
464
- cd flux-lora-ease
465
- ## Optional, start a venv environment (install torch first) ##
466
- python3 -m venv venv
467
- source venv/bin/activate
468
- # .\venv\Scripts\activate on windows
469
- ## End of optional ##
470
- pip install -r requirements_local.txt
471
- ```
472
-
473
- Then you can install ai-toolkit
474
- ```bash
475
- git clone https://github.com/ostris/ai-toolkit.git
476
- cd ai-toolkit
477
- git submodule update --init --recursive
478
- pip3 install torch
479
- pip3 install -r requirements.txt
480
- cd ..
481
- ```
482
-
483
- Login with Hugging Face to access FLUX.1 [dev], choose a token with `write` permissions to push your LoRAs to the HF Hub
484
- ```bash
485
- huggingface-cli login
486
- ```
487
-
488
- Finally, you can run FLUX LoRA Ease locally with a UI by doing a simple
489
- ```py
490
- python app.py
491
- ```
492
-
493
- If you prefer command line, you can run Ostris' [AI Toolkit](https://github.com/ostris/ai-toolkit) yourself directly.
494
- """
495
- )
496
 
497
  dataset_folder = gr.State()
498
 
 
457
  start = gr.Button("Start training", visible=False)
458
  progress_area = gr.Markdown("")
459
 
460
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
 
462
  dataset_folder = gr.State()
463