Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,32 @@ from huggingface_hub import whoami, HfApi
|
|
5 |
from fastapi import FastAPI
|
6 |
from starlette.middleware.sessions import SessionMiddleware
|
7 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import gradio as gr
|
9 |
from PIL import Image
|
10 |
import torch
|
@@ -14,129 +40,91 @@ import json
|
|
14 |
import yaml
|
15 |
from slugify import slugify
|
16 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
17 |
-
import numpy as np
|
18 |
-
|
19 |
-
# Set environment variables
|
20 |
-
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
21 |
-
|
22 |
-
# Check if we're running on HF Spaces
|
23 |
-
is_spaces = True if os.environ.get("SPACE_ID") else False
|
24 |
|
25 |
-
#
|
26 |
app = FastAPI()
|
27 |
app.add_middleware(SessionMiddleware, secret_key="your-secret-key")
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
MAX_IMAGES = 150
|
31 |
|
32 |
-
|
|
|
33 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
34 |
if not HF_TOKEN:
|
35 |
raise ValueError("HF_TOKEN environment variable is not set")
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN
|
38 |
|
39 |
-
#
|
40 |
api = HfApi(token=HF_TOKEN)
|
41 |
|
42 |
-
# Create default train config
|
43 |
-
def get_default_train_config(lora_name, username, trigger_word=None):
|
44 |
-
"""Generate a default training configuration"""
|
45 |
-
slugged_lora_name = slugify(lora_name)
|
46 |
-
|
47 |
-
config = {
|
48 |
-
"config": {
|
49 |
-
"name": slugged_lora_name,
|
50 |
-
"process": [{
|
51 |
-
"model": {
|
52 |
-
"name_or_path": "black-forest-labs/FLUX.1-dev",
|
53 |
-
"assistant_lora_path": None,
|
54 |
-
"low_vram": False,
|
55 |
-
},
|
56 |
-
"network": {
|
57 |
-
"linear": 16,
|
58 |
-
"linear_alpha": 16
|
59 |
-
},
|
60 |
-
"train": {
|
61 |
-
"skip_first_sample": True,
|
62 |
-
"steps": 1000,
|
63 |
-
"lr": 4e-4,
|
64 |
-
"disable_sampling": False
|
65 |
-
},
|
66 |
-
"datasets": [{
|
67 |
-
"folder_path": "", # Will be filled later
|
68 |
-
}],
|
69 |
-
"save": {
|
70 |
-
"push_to_hub": True,
|
71 |
-
"hf_repo_id": f"{username}/{slugged_lora_name}",
|
72 |
-
"hf_private": True,
|
73 |
-
"hf_token": HF_TOKEN
|
74 |
-
},
|
75 |
-
"sample": {
|
76 |
-
"sample_steps": 28,
|
77 |
-
"sample_every": 1000,
|
78 |
-
"prompts": []
|
79 |
-
}
|
80 |
-
}]
|
81 |
-
}
|
82 |
-
}
|
83 |
-
|
84 |
-
if trigger_word:
|
85 |
-
config["config"]["process"][0]["trigger_word"] = trigger_word
|
86 |
-
|
87 |
-
return config
|
88 |
-
|
89 |
-
# Helper functions
|
90 |
def load_captioning(uploaded_files, concept_sentence):
|
91 |
-
"""Load images and prepare captioning UI"""
|
92 |
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
93 |
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
94 |
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
95 |
updates = []
|
96 |
-
|
97 |
if len(uploaded_images) <= 1:
|
98 |
raise gr.Error(
|
99 |
-
"Please upload at least 2 images to train your model (the ideal number is between 4-30)"
|
100 |
)
|
101 |
elif len(uploaded_images) > MAX_IMAGES:
|
102 |
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
103 |
-
|
104 |
-
#
|
105 |
updates.append(gr.update(visible=True))
|
106 |
-
|
107 |
-
# Update individual captioning rows
|
108 |
for i in range(1, MAX_IMAGES + 1):
|
|
|
109 |
visible = i <= len(uploaded_images)
|
110 |
|
|
|
111 |
updates.append(gr.update(visible=visible))
|
112 |
-
|
|
|
113 |
image_value = uploaded_images[i - 1] if visible else None
|
114 |
updates.append(gr.update(value=image_value, visible=visible))
|
115 |
|
116 |
corresponding_caption = False
|
117 |
-
if
|
118 |
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
|
|
|
|
119 |
if base_name in txt_files_dict:
|
|
|
120 |
with open(txt_files_dict[base_name], 'r') as file:
|
121 |
corresponding_caption = file.read()
|
122 |
|
|
|
123 |
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
|
124 |
updates.append(gr.update(value=text_value, visible=visible))
|
125 |
|
126 |
-
# Update sample caption area
|
127 |
updates.append(gr.update(visible=True))
|
|
|
128 |
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
|
129 |
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
|
130 |
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
|
131 |
-
|
132 |
return updates
|
133 |
|
134 |
def hide_captioning():
|
135 |
-
"""Hide captioning UI elements"""
|
136 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
137 |
|
138 |
-
def create_dataset(
|
139 |
-
"
|
|
|
140 |
destination_folder = str(f"datasets/{uuid.uuid4()}")
|
141 |
if not os.path.exists(destination_folder):
|
142 |
os.makedirs(destination_folder)
|
@@ -144,225 +132,63 @@ def create_dataset(images, *captions):
|
|
144 |
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
145 |
with open(jsonl_file_path, "a") as jsonl_file:
|
146 |
for index, image in enumerate(images):
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
153 |
|
154 |
return destination_folder
|
155 |
|
|
|
156 |
def run_captioning(images, concept_sentence, *captions):
|
157 |
-
""
|
158 |
-
|
159 |
-
|
160 |
-
torch_dtype =
|
161 |
-
|
162 |
-
|
163 |
-
model = AutoModelForCausalLM.from_pretrained(
|
164 |
-
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True
|
165 |
-
).to(device)
|
166 |
-
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
167 |
-
|
168 |
-
captions = list(captions)
|
169 |
-
for i, image_path in enumerate(images):
|
170 |
-
if not image_path: # Skip None values
|
171 |
-
continue
|
172 |
-
|
173 |
-
if isinstance(image_path, str): # If image is a file path
|
174 |
-
try:
|
175 |
-
image = Image.open(image_path).convert("RGB")
|
176 |
-
except Exception as e:
|
177 |
-
print(f"Error opening image {image_path}: {e}")
|
178 |
-
continue
|
179 |
-
|
180 |
-
prompt = "<DETAILED_CAPTION>"
|
181 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
182 |
-
|
183 |
-
generated_ids = model.generate(
|
184 |
-
input_ids=inputs["input_ids"],
|
185 |
-
pixel_values=inputs["pixel_values"],
|
186 |
-
max_new_tokens=1024,
|
187 |
-
num_beams=3
|
188 |
-
)
|
189 |
-
|
190 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
191 |
-
parsed_answer = processor.post_process_generation(
|
192 |
-
generated_text, task=prompt, image_size=(image.width, image.height)
|
193 |
-
)
|
194 |
-
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
195 |
-
if concept_sentence:
|
196 |
-
caption_text = f"{caption_text} [trigger]"
|
197 |
-
|
198 |
-
captions[i] = caption_text
|
199 |
-
yield captions
|
200 |
-
|
201 |
-
# Clean up to free memory
|
202 |
-
model.to("cpu")
|
203 |
-
del model
|
204 |
-
del processor
|
205 |
-
torch.cuda.empty_cache()
|
206 |
-
|
207 |
-
except Exception as e:
|
208 |
-
print(f"Error in captioning: {e}")
|
209 |
-
raise gr.Error(f"Captioning failed: {str(e)}")
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
cost_per_second = 0.80/60/60
|
217 |
-
cost = round(cost_per_second * total_seconds, 2)
|
218 |
-
cost_preview = f'''To train this LoRA, a paid L4 GPU will be used during training.
|
219 |
-
### Estimated to take <b>~{round(int(total_seconds)/60, 2)} minutes</b> with your current settings <small>({int(steps)} iterations)</small>'''
|
220 |
-
return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True)
|
221 |
-
except:
|
222 |
-
return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
try:
|
227 |
-
# This is a simplified placeholder for the actual training code
|
228 |
-
# Instead of using the ai-toolkit which is causing errors, we'll implement our own training logic
|
229 |
-
|
230 |
-
# Call to a direct training script that doesn't require the problematic dependencies
|
231 |
-
script_path = os.path.join(os.getcwd(), "direct_train_lora.py")
|
232 |
-
with open(script_path, "w") as f:
|
233 |
-
f.write("""
|
234 |
-
import os
|
235 |
-
import sys
|
236 |
-
import yaml
|
237 |
-
import torch
|
238 |
-
from peft import LoraConfig, get_peft_model
|
239 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
240 |
-
from datasets import load_dataset
|
241 |
-
import json
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
with open(config_path, 'r') as f:
|
246 |
-
config = yaml.safe_load(f)
|
247 |
-
|
248 |
-
process_config = config['config']['process'][0]
|
249 |
-
|
250 |
-
# Get basic parameters
|
251 |
-
model_name = process_config['model']['name_or_path']
|
252 |
-
lora_rank = process_config['network']['linear']
|
253 |
-
steps = process_config['train']['steps']
|
254 |
-
lr = process_config['train']['lr']
|
255 |
-
dataset_path = process_config['datasets'][0]['folder_path']
|
256 |
-
repo_id = process_config['save']['hf_repo_id']
|
257 |
-
hf_token = process_config['save']['hf_token']
|
258 |
-
|
259 |
-
# Load dataset
|
260 |
-
dataset = []
|
261 |
-
with open(os.path.join(dataset_path, "metadata.jsonl"), 'r') as f:
|
262 |
-
for line in f:
|
263 |
-
data = json.loads(line)
|
264 |
-
image_path = os.path.join(dataset_path, data['file_name'])
|
265 |
-
prompt = data['prompt']
|
266 |
-
dataset.append({"image_path": image_path, "text": prompt})
|
267 |
-
|
268 |
-
# Load base model
|
269 |
-
print(f"Loading model {model_name}")
|
270 |
-
model = AutoModelForCausalLM.from_pretrained(
|
271 |
-
model_name,
|
272 |
-
torch_dtype=torch.float16,
|
273 |
-
device_map="auto",
|
274 |
-
trust_remote_code=True,
|
275 |
-
use_auth_token=hf_token
|
276 |
-
)
|
277 |
-
|
278 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
279 |
-
|
280 |
-
# Configure LoRA
|
281 |
-
lora_config = LoraConfig(
|
282 |
-
r=lora_rank,
|
283 |
-
lora_alpha=lora_rank,
|
284 |
-
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
|
285 |
-
lora_dropout=0.05,
|
286 |
-
bias="none",
|
287 |
-
task_type="CAUSAL_LM"
|
288 |
-
)
|
289 |
-
|
290 |
-
# Apply LoRA
|
291 |
-
model = get_peft_model(model, lora_config)
|
292 |
-
|
293 |
-
# Training parameters
|
294 |
-
training_args = TrainingArguments(
|
295 |
-
output_dir=f"./lora_train/{repo_id.split('/')[-1]}",
|
296 |
-
num_train_epochs=3,
|
297 |
-
per_device_train_batch_size=1,
|
298 |
-
gradient_accumulation_steps=4,
|
299 |
-
learning_rate=lr,
|
300 |
-
max_steps=steps,
|
301 |
-
fp16=True,
|
302 |
-
logging_steps=10,
|
303 |
-
save_steps=steps // 2,
|
304 |
-
push_to_hub=True,
|
305 |
-
hub_model_id=repo_id,
|
306 |
-
hub_token=hf_token,
|
307 |
-
)
|
308 |
-
|
309 |
-
# Simple dataset preparation
|
310 |
-
def process_batch(examples):
|
311 |
-
return tokenizer(
|
312 |
-
examples["text"],
|
313 |
-
padding="max_length",
|
314 |
-
truncation=True,
|
315 |
-
max_length=256
|
316 |
)
|
317 |
-
|
318 |
-
# Convert dataset to huggingface format
|
319 |
-
train_dataset = load_dataset('json', data_files={'train': dataset_path + '/metadata.jsonl'})['train']
|
320 |
-
|
321 |
-
# Set up trainer
|
322 |
-
trainer = Trainer(
|
323 |
-
model=model,
|
324 |
-
args=training_args,
|
325 |
-
train_dataset=train_dataset,
|
326 |
-
data_collator=lambda data: {'input_ids': torch.stack([f['input_ids'] for f in data]),
|
327 |
-
'attention_mask': torch.stack([f['attention_mask'] for f in data])},
|
328 |
-
)
|
329 |
-
|
330 |
-
# Train
|
331 |
-
print("Starting training...")
|
332 |
-
trainer.train()
|
333 |
-
|
334 |
-
# Save and push to hub
|
335 |
-
model.save_pretrained(f"./lora_final/{repo_id.split('/')[-1]}")
|
336 |
-
tokenizer.save_pretrained(f"./lora_final/{repo_id.split('/')[-1]}")
|
337 |
-
|
338 |
-
if process_config['save']['push_to_hub']:
|
339 |
-
model.push_to_hub(repo_id, use_auth_token=hf_token)
|
340 |
-
tokenizer.push_to_hub(repo_id, use_auth_token=hf_token)
|
341 |
-
|
342 |
-
print(f"Training completed! Model saved to {repo_id}")
|
343 |
-
return repo_id
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
366 |
|
367 |
def start_training(
|
368 |
lora_name,
|
@@ -378,7 +204,6 @@ def start_training(
|
|
378 |
use_more_advanced_options,
|
379 |
more_advanced_options,
|
380 |
):
|
381 |
-
"""Start the LoRA training process"""
|
382 |
if not lora_name:
|
383 |
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
384 |
|
@@ -390,18 +215,33 @@ def start_training(
|
|
390 |
print("Started training")
|
391 |
slugged_lora_name = slugify(lora_name)
|
392 |
|
393 |
-
#
|
394 |
-
|
395 |
-
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
config["config"]["process"][0]["train"]["steps"] = int(steps)
|
398 |
config["config"]["process"][0]["train"]["lr"] = float(lr)
|
399 |
config["config"]["process"][0]["network"]["linear"] = int(rank)
|
400 |
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
401 |
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
-
# Add sample prompts if provided
|
404 |
if sample_1 or sample_2 or sample_3:
|
|
|
|
|
405 |
config["config"]["process"][0]["sample"]["prompts"] = []
|
406 |
if sample_1:
|
407 |
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
|
@@ -412,46 +252,100 @@ def start_training(
|
|
412 |
else:
|
413 |
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
def recursive_update(d, u):
|
420 |
-
for k, v in u.items():
|
421 |
-
if isinstance(v, dict) and v:
|
422 |
-
d[k] = recursive_update(d.get(k, {}), v)
|
423 |
-
else:
|
424 |
-
d[k] = v
|
425 |
-
return d
|
426 |
-
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
427 |
-
except Exception as e:
|
428 |
-
raise gr.Error(f"Error in advanced options: {str(e)}")
|
429 |
|
430 |
try:
|
431 |
-
# Save the config
|
|
|
432 |
os.makedirs("tmp", exist_ok=True)
|
433 |
-
config_path = f"tmp/{
|
434 |
with open(config_path, "w") as f:
|
435 |
yaml.dump(config, f)
|
436 |
|
437 |
-
#
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
except Exception as e:
|
443 |
raise gr.Error(f"Training failed: {str(e)}")
|
444 |
|
445 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
custom_theme = gr.themes.Base(
|
447 |
primary_hue="indigo",
|
448 |
secondary_hue="slate",
|
449 |
neutral_hue="slate",
|
450 |
).set(
|
|
|
451 |
background_fill_primary="#1a1a1a",
|
452 |
background_fill_secondary="#2d2d2d",
|
453 |
border_color_primary="#404040",
|
454 |
|
|
|
455 |
button_primary_background_fill="#4F46E5",
|
456 |
button_primary_background_fill_dark="#4338CA",
|
457 |
button_primary_background_fill_hover="#6366F1",
|
@@ -466,6 +360,7 @@ custom_theme = gr.themes.Base(
|
|
466 |
button_secondary_text_color="white",
|
467 |
button_secondary_text_color_dark="white",
|
468 |
|
|
|
469 |
block_background_fill="#2d2d2d",
|
470 |
block_background_fill_dark="#1F2937",
|
471 |
block_label_background_fill="#4F46E5",
|
@@ -475,18 +370,31 @@ custom_theme = gr.themes.Base(
|
|
475 |
block_title_text_color="white",
|
476 |
block_title_text_color_dark="white",
|
477 |
|
|
|
478 |
input_background_fill="#374151",
|
479 |
input_background_fill_dark="#1F2937",
|
480 |
input_border_color="#4B5563",
|
481 |
input_border_color_dark="#374151",
|
482 |
input_placeholder_color="#9CA3AF",
|
483 |
input_placeholder_color_dark="#6B7280",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
)
|
485 |
|
486 |
-
css
|
487 |
-
/*
|
488 |
h1 {
|
489 |
-
font-size:
|
490 |
text-align: center;
|
491 |
margin-bottom: 0.5em;
|
492 |
color: white !important;
|
@@ -498,67 +406,193 @@ h3 {
|
|
498 |
color: white !important;
|
499 |
}
|
500 |
|
501 |
-
/*
|
502 |
-
.markdown
|
503 |
-
.markdown h4, .markdown h5, .markdown h6, .markdown p,
|
504 |
-
label, .label-text, .gradio-radio label span, .gradio-checkbox label span,
|
505 |
-
input, textarea, .gradio-textbox input, .gradio-textbox textarea,
|
506 |
-
.gradio-number input, select, option, button {
|
507 |
color: white !important;
|
508 |
}
|
509 |
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
514 |
color: white !important;
|
515 |
}
|
516 |
|
517 |
-
/*
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
transition: all 0.3s ease;
|
|
|
520 |
}
|
521 |
|
522 |
-
button:hover {
|
523 |
transform: translateY(-2px);
|
524 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
525 |
}
|
526 |
|
527 |
-
/*
|
528 |
.image-upload-area {
|
529 |
-
border: 2px dashed
|
530 |
border-radius: 12px;
|
531 |
padding: 20px;
|
532 |
text-align: center;
|
533 |
margin-bottom: 20px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
}
|
535 |
|
536 |
-
/* Caption rows */
|
537 |
.caption-row {
|
538 |
display: flex;
|
539 |
align-items: center;
|
540 |
margin-bottom: 10px;
|
541 |
gap: 10px;
|
542 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
'''
|
544 |
|
545 |
-
# Gradio
|
546 |
with gr.Blocks(theme=custom_theme, css=css) as demo:
|
|
|
547 |
gr.Markdown(
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
)
|
552 |
|
553 |
with gr.Tab("Train"):
|
554 |
-
with gr.Column():
|
555 |
-
# LoRA ์ค์
|
556 |
-
with gr.Group():
|
557 |
with gr.Row():
|
558 |
lora_name = gr.Textbox(
|
559 |
label="LoRA ์ด๋ฆ",
|
560 |
info="๊ณ ์ ํ ์ด๋ฆ์ด์ด์ผ ํฉ๋๋ค",
|
561 |
-
placeholder="์: Persian Miniature
|
562 |
)
|
563 |
concept_sentence = gr.Textbox(
|
564 |
label="ํธ๋ฆฌ๊ฑฐ ๋จ์ด/๋ฌธ์ฅ",
|
@@ -570,11 +604,12 @@ with gr.Blocks(theme=custom_theme, css=css) as demo:
|
|
570 |
which_model = gr.Radio(
|
571 |
["๊ณ ํ๋ฆฌํฐ ๋ง์ถค ํ์ต ๋ชจ๋ธ"],
|
572 |
label="๊ธฐ๋ณธ ๋ชจ๋ธ",
|
573 |
-
value="
|
574 |
)
|
575 |
|
576 |
-
# ์ด๋ฏธ์ง ์
๋ก๋
|
577 |
with gr.Group(visible=True, elem_classes="image-upload-area") as image_upload:
|
|
|
578 |
with gr.Row():
|
579 |
images = gr.File(
|
580 |
file_types=["image", ".txt"],
|
@@ -588,8 +623,8 @@ with gr.Blocks(theme=custom_theme, css=css) as demo:
|
|
588 |
with gr.Column():
|
589 |
gr.Markdown(
|
590 |
"""# ์ด๋ฏธ์ง ๋ผ๋ฒจ๋ง
|
591 |
-
<p style="margin-top:0"> ๋น์ ์ธ์ LLM์ด ์ด๋ฏธ์ง๋ฅผ ์ธ์ํ์ฌ ์๋์ผ๋ก ๋ผ๋ฒจ๋ง(์ด๋ฏธ์ง ์ธ์์ ์ํ ํ์ ์ค๋ช
). [trigger] 'ํธ๋ฆฌ๊ฑฐ ์๋'๋ ํ์ตํ ๋ชจ๋ธ์ ์คํํ๋ ๊ณ ์
|
592 |
-
""", elem_classes="group_padding")
|
593 |
do_captioning = gr.Button("๋น์ ์ธ์ LLM ์๋ ๋ผ๋ฒจ๋ง")
|
594 |
output_components = [captioning_area]
|
595 |
caption_list = []
|
@@ -616,55 +651,16 @@ with gr.Blocks(theme=custom_theme, css=css) as demo:
|
|
616 |
output_components.append(locals()[f"caption_{i}"])
|
617 |
caption_list.append(locals()[f"caption_{i}"])
|
618 |
|
619 |
-
# ๊ณ ๊ธ ์ค์
|
620 |
with gr.Accordion("Advanced options", open=False):
|
621 |
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
|
622 |
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
|
623 |
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
|
624 |
with gr.Accordion("Even more advanced options", open=False):
|
|
|
|
|
625 |
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
|
626 |
-
more_advanced_options = gr.Code(
|
627 |
-
value="""
|
628 |
-
device: cuda:0
|
629 |
-
model:
|
630 |
-
is_flux: true
|
631 |
-
quantize: true
|
632 |
-
network:
|
633 |
-
linear: 16
|
634 |
-
linear_alpha: 16
|
635 |
-
type: lora
|
636 |
-
sample:
|
637 |
-
guidance_scale: 3.5
|
638 |
-
height: 1024
|
639 |
-
neg: ''
|
640 |
-
sample_steps: 28
|
641 |
-
sampler: flowmatch
|
642 |
-
seed: 42
|
643 |
-
walk_seed: true
|
644 |
-
width: 1024
|
645 |
-
save:
|
646 |
-
dtype: float16
|
647 |
-
hf_private: true
|
648 |
-
max_step_saves_to_keep: 4
|
649 |
-
push_to_hub: true
|
650 |
-
save_every: 10000
|
651 |
-
train:
|
652 |
-
batch_size: 1
|
653 |
-
dtype: bf16
|
654 |
-
ema_config:
|
655 |
-
ema_decay: 0.99
|
656 |
-
use_ema: true
|
657 |
-
gradient_accumulation_steps: 1
|
658 |
-
gradient_checkpointing: true
|
659 |
-
noise_scheduler: flowmatch
|
660 |
-
optimizer: adamw8bit
|
661 |
-
train_text_encoder: false
|
662 |
-
train_unet: true
|
663 |
-
""",
|
664 |
-
language="yaml"
|
665 |
-
)
|
666 |
|
667 |
-
# ์ํ ํ๋กฌํํธ
|
668 |
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
|
669 |
gr.Markdown(
|
670 |
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
|
@@ -672,28 +668,20 @@ train:
|
|
672 |
sample_1 = gr.Textbox(label="Test prompt 1")
|
673 |
sample_2 = gr.Textbox(label="Test prompt 2")
|
674 |
sample_3 = gr.Textbox(label="Test prompt 3")
|
675 |
-
|
676 |
-
# ๋น์ฉ ์๋ด
|
677 |
with gr.Group(visible=False) as cost_preview:
|
678 |
cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding")
|
679 |
payment_update = gr.Button("I have set up a payment method", visible=False)
|
680 |
-
|
681 |
-
# ์กฐํฉ ๋ณ์
|
682 |
output_components.append(sample)
|
683 |
output_components.append(sample_1)
|
684 |
output_components.append(sample_2)
|
685 |
output_components.append(sample_3)
|
686 |
-
|
687 |
-
# ์์ ๋ฒํผ
|
688 |
-
start = gr.Button("START ํด๋ฆญ ('์ฝ 15-20๋ถ ํ ํ์ต์ด ์ข
๋ฃ๋๊ณ ์๋ฃ ๋ฉ์์ง๊ฐ ์ถ๋ ฅ๋ฉ๋๋ค')", visible=False)
|
689 |
-
|
690 |
-
# ์งํ ์ํ
|
691 |
progress_area = gr.Markdown("")
|
692 |
|
693 |
-
|
|
|
694 |
dataset_folder = gr.State()
|
695 |
|
696 |
-
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
|
697 |
images.upload(
|
698 |
load_captioning,
|
699 |
inputs=[images, concept_sentence],
|
@@ -719,17 +707,14 @@ train:
|
|
719 |
outputs=[cost_preview, cost_preview_info, payment_update, start]
|
720 |
)
|
721 |
|
722 |
-
|
723 |
-
|
|
|
724 |
inputs=[steps],
|
725 |
outputs=[cost_preview, cost_preview_info, payment_update, start]
|
726 |
)
|
727 |
|
728 |
-
start.click(
|
729 |
-
fn=create_dataset,
|
730 |
-
inputs=[images] + caption_list,
|
731 |
-
outputs=dataset_folder
|
732 |
-
).then(
|
733 |
fn=start_training,
|
734 |
inputs=[
|
735 |
lora_name,
|
@@ -748,12 +733,8 @@ train:
|
|
748 |
outputs=progress_area,
|
749 |
)
|
750 |
|
751 |
-
do_captioning.click(
|
752 |
-
|
753 |
-
inputs=[images, concept_sentence] + caption_list,
|
754 |
-
outputs=caption_list
|
755 |
-
)
|
756 |
|
757 |
-
# Launch the app
|
758 |
if __name__ == "__main__":
|
759 |
demo.launch(server_name="0.0.0.0", server_port=7860, auth=("gini", "pick"), show_error=True)
|
|
|
5 |
from fastapi import FastAPI
|
6 |
from starlette.middleware.sessions import SessionMiddleware
|
7 |
import sys
|
8 |
+
|
9 |
+
# ai-toolkit์ด ์์ผ๋ฉด ์ค์น
|
10 |
+
if not os.path.exists("ai-toolkit"):
|
11 |
+
subprocess.run("git clone https://github.com/ostris/ai-toolkit.git", shell=True)
|
12 |
+
subprocess.run("cd ai-toolkit && git submodule update --init --recursive", shell=True)
|
13 |
+
|
14 |
+
# ai-toolkit ๊ฒฝ๋ก ์ถ๊ฐ
|
15 |
+
toolkit_path = os.path.join(os.getcwd(), "ai-toolkit")
|
16 |
+
sys.path.append(toolkit_path)
|
17 |
+
|
18 |
+
# ํ์ํ ํจํค์ง ์ค์น
|
19 |
+
subprocess.run("pip install -r ai-toolkit/requirements.txt", shell=True)
|
20 |
+
|
21 |
+
|
22 |
+
is_spaces = True if os.environ.get("SPACE_ID") else False
|
23 |
+
|
24 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
25 |
+
import sys
|
26 |
+
|
27 |
+
from dotenv import load_dotenv
|
28 |
+
|
29 |
+
load_dotenv()
|
30 |
+
|
31 |
+
# Add the current working directory to the Python path
|
32 |
+
sys.path.insert(0, os.getcwd())
|
33 |
+
|
34 |
import gradio as gr
|
35 |
from PIL import Image
|
36 |
import torch
|
|
|
40 |
import yaml
|
41 |
from slugify import slugify
|
42 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Gradio app ์ค์
|
45 |
app = FastAPI()
|
46 |
app.add_middleware(SessionMiddleware, secret_key="your-secret-key")
|
47 |
|
48 |
+
if not is_spaces:
|
49 |
+
sys.path.insert(0, "ai-toolkit")
|
50 |
+
from toolkit.job import get_job
|
51 |
+
gr.OAuthProfile = None
|
52 |
+
gr.OAuthToken = None
|
53 |
+
|
54 |
+
|
55 |
MAX_IMAGES = 150
|
56 |
|
57 |
+
|
58 |
+
# Hugging Face ํ ํฐ ์ค์
|
59 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
60 |
if not HF_TOKEN:
|
61 |
raise ValueError("HF_TOKEN environment variable is not set")
|
62 |
|
63 |
+
|
64 |
+
if is_spaces:
|
65 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
66 |
+
import spaces
|
67 |
+
|
68 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
69 |
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN
|
70 |
|
71 |
+
# HF API ์ด๊ธฐํ
|
72 |
api = HfApi(token=HF_TOKEN)
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def load_captioning(uploaded_files, concept_sentence):
|
|
|
75 |
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
76 |
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
77 |
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
78 |
updates = []
|
|
|
79 |
if len(uploaded_images) <= 1:
|
80 |
raise gr.Error(
|
81 |
+
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
82 |
)
|
83 |
elif len(uploaded_images) > MAX_IMAGES:
|
84 |
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
85 |
+
# Update for the captioning_area
|
86 |
+
# for _ in range(3):
|
87 |
updates.append(gr.update(visible=True))
|
88 |
+
# Update visibility and image for each captioning row and image
|
|
|
89 |
for i in range(1, MAX_IMAGES + 1):
|
90 |
+
# Determine if the current row and image should be visible
|
91 |
visible = i <= len(uploaded_images)
|
92 |
|
93 |
+
# Update visibility of the captioning row
|
94 |
updates.append(gr.update(visible=visible))
|
95 |
+
|
96 |
+
# Update for image component - display image if available, otherwise hide
|
97 |
image_value = uploaded_images[i - 1] if visible else None
|
98 |
updates.append(gr.update(value=image_value, visible=visible))
|
99 |
|
100 |
corresponding_caption = False
|
101 |
+
if(image_value):
|
102 |
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
103 |
+
print(base_name)
|
104 |
+
print(image_value)
|
105 |
if base_name in txt_files_dict:
|
106 |
+
print("entrou")
|
107 |
with open(txt_files_dict[base_name], 'r') as file:
|
108 |
corresponding_caption = file.read()
|
109 |
|
110 |
+
# Update value of captioning area
|
111 |
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
|
112 |
updates.append(gr.update(value=text_value, visible=visible))
|
113 |
|
114 |
+
# Update for the sample caption area
|
115 |
updates.append(gr.update(visible=True))
|
116 |
+
# Update prompt samples
|
117 |
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
|
118 |
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
|
119 |
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
|
|
|
120 |
return updates
|
121 |
|
122 |
def hide_captioning():
|
|
|
123 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
124 |
|
125 |
+
def create_dataset(*inputs):
|
126 |
+
print("Creating dataset")
|
127 |
+
images = inputs[0]
|
128 |
destination_folder = str(f"datasets/{uuid.uuid4()}")
|
129 |
if not os.path.exists(destination_folder):
|
130 |
os.makedirs(destination_folder)
|
|
|
132 |
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
133 |
with open(jsonl_file_path, "a") as jsonl_file:
|
134 |
for index, image in enumerate(images):
|
135 |
+
new_image_path = shutil.copy(image, destination_folder)
|
136 |
+
|
137 |
+
original_caption = inputs[index + 1]
|
138 |
+
file_name = os.path.basename(new_image_path)
|
139 |
+
|
140 |
+
data = {"file_name": file_name, "prompt": original_caption}
|
141 |
+
|
142 |
+
jsonl_file.write(json.dumps(data) + "\n")
|
143 |
|
144 |
return destination_folder
|
145 |
|
146 |
+
|
147 |
def run_captioning(images, concept_sentence, *captions):
|
148 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
149 |
+
torch_dtype = torch.float16
|
150 |
+
model = AutoModelForCausalLM.from_pretrained(
|
151 |
+
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True
|
152 |
+
).to(device)
|
153 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
captions = list(captions)
|
156 |
+
for i, image_path in enumerate(images):
|
157 |
+
print(captions[i])
|
158 |
+
if isinstance(image_path, str): # If image is a file path
|
159 |
+
image = Image.open(image_path).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
prompt = "<DETAILED_CAPTION>"
|
162 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
generated_ids = model.generate(
|
165 |
+
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
169 |
+
parsed_answer = processor.post_process_generation(
|
170 |
+
generated_text, task=prompt, image_size=(image.width, image.height)
|
171 |
+
)
|
172 |
+
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
173 |
+
if concept_sentence:
|
174 |
+
caption_text = f"{caption_text} [trigger]"
|
175 |
+
captions[i] = caption_text
|
176 |
+
|
177 |
+
yield captions
|
178 |
+
model.to("cpu")
|
179 |
+
del model
|
180 |
+
del processor
|
181 |
+
|
182 |
+
if is_spaces:
|
183 |
+
run_captioning = spaces.GPU()(run_captioning)
|
184 |
+
|
185 |
+
def recursive_update(d, u):
|
186 |
+
for k, v in u.items():
|
187 |
+
if isinstance(v, dict) and v:
|
188 |
+
d[k] = recursive_update(d.get(k, {}), v)
|
189 |
+
else:
|
190 |
+
d[k] = v
|
191 |
+
return d
|
192 |
|
193 |
def start_training(
|
194 |
lora_name,
|
|
|
204 |
use_more_advanced_options,
|
205 |
more_advanced_options,
|
206 |
):
|
|
|
207 |
if not lora_name:
|
208 |
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
209 |
|
|
|
215 |
print("Started training")
|
216 |
slugged_lora_name = slugify(lora_name)
|
217 |
|
218 |
+
# Load the default config
|
219 |
+
with open("train_lora_flux_24gb.yaml", "r") as f:
|
220 |
+
config = yaml.safe_load(f)
|
221 |
+
|
222 |
+
# dev ๋ชจ๋ธ ์ค์
|
223 |
+
config["config"]["name"] = slugged_lora_name
|
224 |
+
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-dev"
|
225 |
+
config["config"]["process"][0]["model"]["assistant_lora_path"] = None # adapter ์์ด ์ค์
|
226 |
+
config["config"]["process"][0]["model"]["low_vram"] = False
|
227 |
+
config["config"]["process"][0]["train"]["skip_first_sample"] = True
|
228 |
config["config"]["process"][0]["train"]["steps"] = int(steps)
|
229 |
config["config"]["process"][0]["train"]["lr"] = float(lr)
|
230 |
config["config"]["process"][0]["network"]["linear"] = int(rank)
|
231 |
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
232 |
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
233 |
+
config["config"]["process"][0]["save"]["push_to_hub"] = True
|
234 |
+
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
235 |
+
config["config"]["process"][0]["save"]["hf_private"] = True
|
236 |
+
config["config"]["process"][0]["save"]["hf_token"] = HF_TOKEN
|
237 |
+
config["config"]["process"][0]["sample"]["sample_steps"] = 28
|
238 |
+
|
239 |
+
if concept_sentence:
|
240 |
+
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
241 |
|
|
|
242 |
if sample_1 or sample_2 or sample_3:
|
243 |
+
config["config"]["process"][0]["train"]["disable_sampling"] = False
|
244 |
+
config["config"]["process"][0]["sample"]["sample_every"] = steps
|
245 |
config["config"]["process"][0]["sample"]["prompts"] = []
|
246 |
if sample_1:
|
247 |
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
|
|
|
252 |
else:
|
253 |
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
254 |
|
255 |
+
if(use_more_advanced_options):
|
256 |
+
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
|
257 |
+
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
258 |
+
print(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
try:
|
261 |
+
# Save the updated config
|
262 |
+
random_config_name = str(uuid.uuid4())
|
263 |
os.makedirs("tmp", exist_ok=True)
|
264 |
+
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
|
265 |
with open(config_path, "w") as f:
|
266 |
yaml.dump(config, f)
|
267 |
|
268 |
+
# ์ง์ ๋ก์ปฌ GPU์์ ํ์ต ์คํ
|
269 |
+
from toolkit.job import get_job
|
270 |
+
job = get_job(config_path)
|
271 |
+
job.run()
|
272 |
+
job.cleanup()
|
273 |
except Exception as e:
|
274 |
raise gr.Error(f"Training failed: {str(e)}")
|
275 |
|
276 |
+
return f"""# Training completed successfully!
|
277 |
+
## Your model is available at: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a>"""
|
278 |
+
|
279 |
+
|
280 |
+
def update_pricing(steps):
|
281 |
+
try:
|
282 |
+
seconds_per_iteration = 7.54
|
283 |
+
total_seconds = (steps * seconds_per_iteration) + 240
|
284 |
+
cost_per_second = 0.80/60/60
|
285 |
+
cost = round(cost_per_second * total_seconds, 2)
|
286 |
+
cost_preview = f'''To train this LoRA, a paid L4 GPU will be hooked under the hood during training and then removed once finished.
|
287 |
+
### Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(steps)} iterations at {seconds_per_iteration}s/it)</small>'''
|
288 |
+
return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True)
|
289 |
+
except:
|
290 |
+
return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True)
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
def swap_base_model(model):
|
295 |
+
return gr.update(visible=True) if model == "[dev] (high quality model, non-commercial license)" else gr.update(visible=False)
|
296 |
+
|
297 |
+
config_yaml = '''
|
298 |
+
device: cuda:0
|
299 |
+
model:
|
300 |
+
is_flux: true
|
301 |
+
quantize: true
|
302 |
+
network:
|
303 |
+
linear: 16 #it will overcome the 'rank' parameter
|
304 |
+
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
|
305 |
+
type: lora
|
306 |
+
sample:
|
307 |
+
guidance_scale: 3.5
|
308 |
+
height: 1024
|
309 |
+
neg: '' #doesn't work for FLUX
|
310 |
+
sample_every: 1000
|
311 |
+
sample_steps: 28
|
312 |
+
sampler: flowmatch
|
313 |
+
seed: 42
|
314 |
+
walk_seed: true
|
315 |
+
width: 1024
|
316 |
+
save:
|
317 |
+
dtype: float16
|
318 |
+
hf_private: true
|
319 |
+
max_step_saves_to_keep: 4
|
320 |
+
push_to_hub: true
|
321 |
+
save_every: 10000
|
322 |
+
train:
|
323 |
+
batch_size: 1
|
324 |
+
dtype: bf16
|
325 |
+
ema_config:
|
326 |
+
ema_decay: 0.99
|
327 |
+
use_ema: true
|
328 |
+
gradient_accumulation_steps: 1
|
329 |
+
gradient_checkpointing: true
|
330 |
+
noise_scheduler: flowmatch
|
331 |
+
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
|
332 |
+
train_text_encoder: false #probably doesn't work for flux
|
333 |
+
train_unet: true
|
334 |
+
'''
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
custom_theme = gr.themes.Base(
|
339 |
primary_hue="indigo",
|
340 |
secondary_hue="slate",
|
341 |
neutral_hue="slate",
|
342 |
).set(
|
343 |
+
# ๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ ๋ฐ ๋ณด๋
|
344 |
background_fill_primary="#1a1a1a",
|
345 |
background_fill_secondary="#2d2d2d",
|
346 |
border_color_primary="#404040",
|
347 |
|
348 |
+
# ๋ฒํผ ์คํ์ผ
|
349 |
button_primary_background_fill="#4F46E5",
|
350 |
button_primary_background_fill_dark="#4338CA",
|
351 |
button_primary_background_fill_hover="#6366F1",
|
|
|
360 |
button_secondary_text_color="white",
|
361 |
button_secondary_text_color_dark="white",
|
362 |
|
363 |
+
# ๋ธ๋ก ์คํ์ผ
|
364 |
block_background_fill="#2d2d2d",
|
365 |
block_background_fill_dark="#1F2937",
|
366 |
block_label_background_fill="#4F46E5",
|
|
|
370 |
block_title_text_color="white",
|
371 |
block_title_text_color_dark="white",
|
372 |
|
373 |
+
# ์
๋ ฅ ํ๋ ์คํ์ผ
|
374 |
input_background_fill="#374151",
|
375 |
input_background_fill_dark="#1F2937",
|
376 |
input_border_color="#4B5563",
|
377 |
input_border_color_dark="#374151",
|
378 |
input_placeholder_color="#9CA3AF",
|
379 |
input_placeholder_color_dark="#6B7280",
|
380 |
+
|
381 |
+
# ๊ทธ๋ฆผ์ ํจ๊ณผ
|
382 |
+
shadow_spread="8px",
|
383 |
+
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.1)",
|
384 |
+
|
385 |
+
# ์ปจํ
์ด๋ ์คํ์ผ
|
386 |
+
panel_background_fill="#2d2d2d",
|
387 |
+
panel_background_fill_dark="#1F2937",
|
388 |
+
|
389 |
+
# ๋ณด๋ ์คํ์ผ
|
390 |
+
border_color_accent="#4F46E5",
|
391 |
+
border_color_accent_dark="#4338CA"
|
392 |
)
|
393 |
|
394 |
+
css='''
|
395 |
+
/* ๊ธฐ๋ณธ ์คํ์ผ */
|
396 |
h1 {
|
397 |
+
font-size: 3em;
|
398 |
text-align: center;
|
399 |
margin-bottom: 0.5em;
|
400 |
color: white !important;
|
|
|
406 |
color: white !important;
|
407 |
}
|
408 |
|
409 |
+
/* Markdown ํ
์คํธ ์คํ์ผ */
|
410 |
+
.markdown {
|
|
|
|
|
|
|
|
|
411 |
color: white !important;
|
412 |
}
|
413 |
|
414 |
+
.markdown h1,
|
415 |
+
.markdown h2,
|
416 |
+
.markdown h3,
|
417 |
+
.markdown h4,
|
418 |
+
.markdown h5,
|
419 |
+
.markdown h6,
|
420 |
+
.markdown p {
|
421 |
color: white !important;
|
422 |
}
|
423 |
|
424 |
+
/* ์ปดํฌ๋ํธ ์คํ์ผ */
|
425 |
+
.container {
|
426 |
+
max-width: 1200px;
|
427 |
+
margin: 0 auto;
|
428 |
+
padding: 20px;
|
429 |
+
}
|
430 |
+
|
431 |
+
/* ์
๋ ฅ ํ๋ ์คํ์ผ */
|
432 |
+
.input-group {
|
433 |
+
background: var(--block-background-fill);
|
434 |
+
padding: 15px;
|
435 |
+
border-radius: 12px;
|
436 |
+
margin-bottom: 20px;
|
437 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
438 |
+
}
|
439 |
+
|
440 |
+
/* ๋ชจ๋ ์
๋ ฅ ํ๋ ํ
์คํธ ์์ */
|
441 |
+
input, textarea, .gradio-textbox input, .gradio-textbox textarea, .gradio-number input {
|
442 |
+
color: white !important;
|
443 |
+
}
|
444 |
+
|
445 |
+
/* ๋ผ๋ฒจ ํ
์คํธ ์คํ์ผ */
|
446 |
+
label, .label-text {
|
447 |
+
color: white !important;
|
448 |
+
}
|
449 |
+
|
450 |
+
/* ๋ผ๋์ค ๋ฒํผ ํ
์คํธ */
|
451 |
+
.gradio-radio label span {
|
452 |
+
color: white !important;
|
453 |
+
}
|
454 |
+
|
455 |
+
/* ์ฒดํฌ๋ฐ์ค ํ
์คํธ */
|
456 |
+
.gradio-checkbox label span {
|
457 |
+
color: white !important;
|
458 |
+
}
|
459 |
+
|
460 |
+
/* ๋ฒํผ ์คํ์ผ */
|
461 |
+
.button {
|
462 |
+
height: 40px;
|
463 |
+
border-radius: 8px;
|
464 |
transition: all 0.3s ease;
|
465 |
+
color: white !important;
|
466 |
}
|
467 |
|
468 |
+
.button:hover {
|
469 |
transform: translateY(-2px);
|
470 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
471 |
}
|
472 |
|
473 |
+
/* ์ด๋ฏธ์ง ์
๋ก๋ ์์ญ */
|
474 |
.image-upload-area {
|
475 |
+
border: 2px dashed var(--input-border-color);
|
476 |
border-radius: 12px;
|
477 |
padding: 20px;
|
478 |
text-align: center;
|
479 |
margin-bottom: 20px;
|
480 |
+
color: white !important;
|
481 |
+
}
|
482 |
+
|
483 |
+
/* ์บก์
์์ญ */
|
484 |
+
.caption-area {
|
485 |
+
background: var(--block-background-fill);
|
486 |
+
padding: 15px;
|
487 |
+
border-radius: 12px;
|
488 |
+
margin-top: 20px;
|
489 |
+
color: white !important;
|
490 |
}
|
491 |
|
|
|
492 |
.caption-row {
|
493 |
display: flex;
|
494 |
align-items: center;
|
495 |
margin-bottom: 10px;
|
496 |
gap: 10px;
|
497 |
}
|
498 |
+
|
499 |
+
/* ๊ณ ๊ธ ์ต์
์์ญ */
|
500 |
+
.advanced-options {
|
501 |
+
background: var(--block-background-fill);
|
502 |
+
padding: 15px;
|
503 |
+
border-radius: 12px;
|
504 |
+
margin-top: 20px;
|
505 |
+
color: white !important;
|
506 |
+
}
|
507 |
+
|
508 |
+
/* ์งํ ์ํ ํ์ */
|
509 |
+
.progress-area {
|
510 |
+
background: var(--block-background-fill);
|
511 |
+
padding: 15px;
|
512 |
+
border-radius: 12px;
|
513 |
+
margin-top: 20px;
|
514 |
+
text-align: center;
|
515 |
+
color: white !important;
|
516 |
+
}
|
517 |
+
|
518 |
+
/* ํ๋ ์ด์คํ๋ ํ
์คํธ */
|
519 |
+
::placeholder {
|
520 |
+
color: rgba(255, 255, 255, 0.5) !important;
|
521 |
+
}
|
522 |
+
|
523 |
+
/* ์ฝ๋ ์๋ํฐ ํ
์คํธ */
|
524 |
+
.gradio-code {
|
525 |
+
color: white !important;
|
526 |
+
}
|
527 |
+
|
528 |
+
/* ์์ฝ๋์ธ ํ
์คํธ */
|
529 |
+
.gradio-accordion .label-wrap {
|
530 |
+
color: white !important;
|
531 |
+
}
|
532 |
+
|
533 |
+
/* ๋ฐ์ํ ๋์์ธ */
|
534 |
+
@media (max-width: 768px) {
|
535 |
+
.caption-row {
|
536 |
+
flex-direction: column;
|
537 |
+
}
|
538 |
+
}
|
539 |
+
|
540 |
+
/* ์คํฌ๋กค๋ฐ ์คํ์ผ */
|
541 |
+
::-webkit-scrollbar {
|
542 |
+
width: 8px;
|
543 |
+
}
|
544 |
+
|
545 |
+
::-webkit-scrollbar-track {
|
546 |
+
background: var(--background-fill-primary);
|
547 |
+
border-radius: 4px;
|
548 |
+
}
|
549 |
+
|
550 |
+
::-webkit-scrollbar-thumb {
|
551 |
+
background: var(--primary-500);
|
552 |
+
border-radius: 4px;
|
553 |
+
}
|
554 |
+
|
555 |
+
::-webkit-scrollbar-thumb:hover {
|
556 |
+
background: var(--primary-600);
|
557 |
+
}
|
558 |
+
|
559 |
+
/* ๋ชจ๋ ํ
์คํธ ์
๋ ฅ ์์ */
|
560 |
+
.gradio-container input[type="text"],
|
561 |
+
.gradio-container textarea,
|
562 |
+
.gradio-container .input-text,
|
563 |
+
.gradio-container .input-textarea {
|
564 |
+
color: white !important;
|
565 |
+
}
|
566 |
+
|
567 |
+
/* ๋๋กญ๋ค์ด ํ
์คํธ */
|
568 |
+
select, option {
|
569 |
+
color: white !important;
|
570 |
+
}
|
571 |
+
|
572 |
+
/* ๋ฒํผ ํ
์คํธ */
|
573 |
+
button {
|
574 |
+
color: white !important;
|
575 |
+
}
|
576 |
'''
|
577 |
|
578 |
+
# Gradio ์ฑ ์์
|
579 |
with gr.Blocks(theme=custom_theme, css=css) as demo:
|
580 |
+
|
581 |
gr.Markdown(
|
582 |
+
"""# ๐ Gini LoRA ํ์ต
|
583 |
+
### 1)LoRA ์ด๋ฆ ์์ด๋ก '์
๋ ฅ' 2)ํธ๋ฆฌ๊ฑฐ ๋จ์ด ์์ด๋ก '์
๋ ฅ' 3)๊ธฐ๋ณธ ๋ชจ๋ธ 'ํด๋ฆญ' 4)์ด๋ฏธ์ง(์ต์ 2์ฅ~์ต๋ 150์ฅ ๋ฏธ๋ง) '์
๋ก๋' 5)๋น์ ์ธ์ LLM ๋ผ๋ฒจ๋ง 'ํด๋ฆญ' 6)START ํด๋ฆญ""",
|
584 |
+
elem_classes=["markdown"]
|
585 |
+
)
|
586 |
|
587 |
with gr.Tab("Train"):
|
588 |
+
with gr.Column(elem_classes="container"):
|
589 |
+
# LoRA ์ค์ ๊ทธ๋ฃน
|
590 |
+
with gr.Group(elem_classes="input-group"):
|
591 |
with gr.Row():
|
592 |
lora_name = gr.Textbox(
|
593 |
label="LoRA ์ด๋ฆ",
|
594 |
info="๊ณ ์ ํ ์ด๋ฆ์ด์ด์ผ ํฉ๋๋ค",
|
595 |
+
placeholder="์: Persian Miniature Painting style, Cat Toy"
|
596 |
)
|
597 |
concept_sentence = gr.Textbox(
|
598 |
label="ํธ๋ฆฌ๊ฑฐ ๋จ์ด/๋ฌธ์ฅ",
|
|
|
604 |
which_model = gr.Radio(
|
605 |
["๊ณ ํ๋ฆฌํฐ ๋ง์ถค ํ์ต ๋ชจ๋ธ"],
|
606 |
label="๊ธฐ๋ณธ ๋ชจ๋ธ",
|
607 |
+
value="[dev] (high quality model)"
|
608 |
)
|
609 |
|
610 |
+
# ์ด๋ฏธ์ง ์
๋ก๋ ์์ญ
|
611 |
with gr.Group(visible=True, elem_classes="image-upload-area") as image_upload:
|
612 |
+
|
613 |
with gr.Row():
|
614 |
images = gr.File(
|
615 |
file_types=["image", ".txt"],
|
|
|
623 |
with gr.Column():
|
624 |
gr.Markdown(
|
625 |
"""# ์ด๋ฏธ์ง ๋ผ๋ฒจ๋ง
|
626 |
+
<p style="margin-top:0"> ๋น์ ์ธ์ LLM์ด ์ด๋ฏธ์ง๋ฅผ ์ธ์ํ์ฌ ์๋์ผ๋ก ๋ผ๋ฒจ๋ง(์ด๋ฏธ์ง ์ธ์์ ์ํ ํ์ ์ค๋ช
). [trigger] 'ํธ๋ฆฌ๊ฑฐ ์๋'๋ ํ์ตํ ๋ชจ๋ธ์ ์คํํ๋ ๊ณ ์ ํค๊ฐ /trigger word.</p>
|
627 |
+
""", elem_classes="group_padding")
|
628 |
do_captioning = gr.Button("๋น์ ์ธ์ LLM ์๋ ๋ผ๋ฒจ๋ง")
|
629 |
output_components = [captioning_area]
|
630 |
caption_list = []
|
|
|
651 |
output_components.append(locals()[f"caption_{i}"])
|
652 |
caption_list.append(locals()[f"caption_{i}"])
|
653 |
|
|
|
654 |
with gr.Accordion("Advanced options", open=False):
|
655 |
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
|
656 |
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
|
657 |
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
|
658 |
with gr.Accordion("Even more advanced options", open=False):
|
659 |
+
if(is_spaces):
|
660 |
+
gr.Markdown("Attention: changing this parameters may make your training fail or go out-of-memory if training on Spaces. Only change settings here it if you know what you are doing. Beware that training is done in an L4 GPU with 24GB of RAM")
|
661 |
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
|
662 |
+
more_advanced_options = gr.Code(config_yaml, language="yaml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
|
|
|
664 |
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
|
665 |
gr.Markdown(
|
666 |
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
|
|
|
668 |
sample_1 = gr.Textbox(label="Test prompt 1")
|
669 |
sample_2 = gr.Textbox(label="Test prompt 2")
|
670 |
sample_3 = gr.Textbox(label="Test prompt 3")
|
|
|
|
|
671 |
with gr.Group(visible=False) as cost_preview:
|
672 |
cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding")
|
673 |
payment_update = gr.Button("I have set up a payment method", visible=False)
|
|
|
|
|
674 |
output_components.append(sample)
|
675 |
output_components.append(sample_1)
|
676 |
output_components.append(sample_2)
|
677 |
output_components.append(sample_3)
|
678 |
+
start = gr.Button("START ํด๋ฆญ('์ฝ 25~30๋ถ ํ ํ์ต์ด ์ข
๋ฃ๋๊ณ ์๋ฃ ๋ฉ์์ง๊ฐ ์ถ๋ ฅ๋ฉ๋๋ค.)'", visible=False)
|
|
|
|
|
|
|
|
|
679 |
progress_area = gr.Markdown("")
|
680 |
|
681 |
+
|
682 |
+
|
683 |
dataset_folder = gr.State()
|
684 |
|
|
|
685 |
images.upload(
|
686 |
load_captioning,
|
687 |
inputs=[images, concept_sentence],
|
|
|
707 |
outputs=[cost_preview, cost_preview_info, payment_update, start]
|
708 |
)
|
709 |
|
710 |
+
gr.on(
|
711 |
+
triggers=[steps.change],
|
712 |
+
fn=update_pricing,
|
713 |
inputs=[steps],
|
714 |
outputs=[cost_preview, cost_preview_info, payment_update, start]
|
715 |
)
|
716 |
|
717 |
+
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
|
|
|
|
|
|
|
|
|
718 |
fn=start_training,
|
719 |
inputs=[
|
720 |
lora_name,
|
|
|
733 |
outputs=progress_area,
|
734 |
)
|
735 |
|
736 |
+
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
|
737 |
+
|
|
|
|
|
|
|
738 |
|
|
|
739 |
if __name__ == "__main__":
|
740 |
demo.launch(server_name="0.0.0.0", server_port=7860, auth=("gini", "pick"), show_error=True)
|