File size: 18,738 Bytes
045e583
71e00ae
 
 
 
 
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e00ae
3739851
 
 
71e00ae
 
 
 
 
3739851
71e00ae
 
 
 
 
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e00ae
 
 
 
 
 
 
 
3739851
 
 
 
 
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
 
d41b366
3739851
71e00ae
3739851
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
 
71e00ae
 
 
 
 
 
3739851
 
 
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
71e00ae
 
 
 
 
3739851
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
 
71e00ae
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os

# Set this environment variable to disable torch.compiler features
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
os.environ["TRANSFORMERS_COMPILER_DISABLED"] = "1"

import yaml
import torch
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
import subprocess
from huggingface_hub import hf_hub_download
from transformers import pipeline

# Initialize the translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--height', type=int, default=2560, help='image height')
    parser.add_argument('--width', type=int, default=5120, help='image width')
    parser.add_argument('--seed', type=int, default=123, help='random seed')
    parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
    parser.add_argument('--config_c', type=str, 
    default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
    parser.add_argument('--prompt', type=str,
     default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
    parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
    parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
    parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
    parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
    args = parser.parse_args()
    return args

def clear_image():
    return None

def load_message(height, width, seed, prompt, args, stage_a_tiled):
    args.height = height
    args.width = width
    args.seed = seed
    args.prompt = prompt + ' rich detail, 4k, high quality'
    args.stage_a_tiled = stage_a_tiled
    return args

def is_korean(text):
    return any('\uac00' <= char <= '\ud7a3' for char in text)

def translate_if_korean(text, translation_display=None):
    if is_korean(text):
        translated = translator(text, max_length=512)[0]['translation_text']
        print(f"Translated from Korean: {text} -> {translated}")
        
        # If translation_display is provided, update it to show the translation
        if translation_display is not None:
            translation_display.update(value=f"Original (Korean): {text}\nTranslation (English): {translated}", visible=True)
            
        return translated
    
    # If not Korean, hide the translation display if it exists
    if translation_display is not None:
        translation_display.update(visible=False)
    
    return text

@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
    global args
    
    args = load_message(height, width, seed, prompt, args, stage_a_tiled)
    torch.manual_seed(args.seed)
    random.seed(args.seed) 
    np.random.seed(args.seed)
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float

    captions = [args.prompt] * args.num_image
    height, width = args.height, args.width
    batch_size = 1 
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
   
    # Stage C Parameters
    extras.sampling_configs['cfg'] = 4
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
    
    # Stage B Parameters
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0

    for _, caption in enumerate(captions):
        batch = {'captions': [caption] * batch_size}
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
        
        with torch.no_grad():
            models.generator.cuda()
            print('STAGE C GENERATION***************************')
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
            
            models.generator.cpu()
            torch.cuda.empty_cache()
            
            conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
            unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            print('STAGE B + A DECODING***************************')
            
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
            
            torch.cuda.empty_cache()
            imgs = show_images(sampled)
                    
    return imgs[0]

def process_and_generate(height, width, seed, prompt, cfg, timesteps, stage_a_tiled, translation_display):
    # First translate if needed and show the translation
    translated_prompt = translate_if_korean(prompt, translation_display)
    
    # Then generate the image
    return get_image(height, width, seed, translated_prompt, cfg, timesteps, stage_a_tiled)

css = """
footer {
    visibility: hidden;
}

/* Main container styling */
#col-container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
    background-color: #f8f9fa;
    border-radius: 15px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}

/* Header styling */
h1 {
    text-align: center;
    color: #ff6b00;
    font-size: 2.5rem;
    margin-bottom: 20px;
    font-weight: 700;
    text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}

/* Button styling */
button.primary {
    background-color: #ff6b00 !important;
    color: white !important;
    border: none !important;
    border-radius: 8px !important;
    padding: 10px 20px !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
}

button.primary:hover {
    background-color: #e55f00 !important;
    transform: translateY(-2px);
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
}

/* Input field styling */
input[type="text"] {
    border-radius: 8px !important;
    border: 2px solid #ddd !important;
    padding: 12px !important;
    font-size: 1rem !important;
    transition: all 0.3s ease !important;
}

input[type="text"]:focus {
    border-color: #ff6b00 !important;
    box-shadow: 0 0 0 3px rgba(255, 107, 0, 0.2) !important;
}

/* Output image container */
.output-image {
    border-radius: 12px;
    overflow: hidden;
    box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
    margin: 20px 0;
    transition: all 0.3s ease;
}

.output-image:hover {
    transform: scale(1.02);
}

/* Accordion styling */
.accordion {
    border-radius: 10px !important;
    overflow: hidden !important;
    margin: 15px 0 !important;
    border: 1px solid #eaeaea !important;
}

/* Example gallery */
.examples-gallery {
    display: grid;
    grid-template-columns: repeat(auto-fill, minmax(300px, 1fr));
    gap: 15px;
    margin-top: 20px;
}

.example-item {
    background-color: white;
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
    transition: all 0.3s ease;
}

.example-item:hover {
    transform: translateY(-5px);
    box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2);
}

/* Language indicator */
.language-indicator {
    background-color: #e6f7ff;
    color: #0072b5;
    border-radius: 20px;
    padding: 2px 10px;
    font-size: 0.8rem;
    margin-left: 10px;
    display: inline-block;
}

/* Loading animation */
@keyframes pulse {
    0% { opacity: 0.6; }
    50% { opacity: 1; }
    100% { opacity: 0.6; }
}

.loading {
    animation: pulse 1.5s infinite;
    text-align: center;
    padding: 20px;
    color: #ff6b00;
    font-weight: bold;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<h1>UHD Image Generator (5120ร—4096)</h1>")
        
        with gr.Group():
            with gr.Row():
                with gr.Column(scale=5):
                    prompt = gr.Textbox(
                        label="Text Prompt",
                        max_lines=2,
                        placeholder="Enter your prompt in Korean or English (ํ•œ๊ตญ์–ด๋‚˜ ์˜์–ด๋กœ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”)",
                        elem_id="prompt-input"
                    )
                
                with gr.Column(scale=1):
                    generate_button = gr.Button("Generate Image", variant="primary", elem_id="generate-btn")
                    clear_button = gr.Button("Clear", elem_id="clear-btn")
        
        # Language detection indicator
        with gr.Row(visible=False) as language_indicator:
            gr.Markdown('<div class="language-indicator">Korean detected - will translate to English</div>')
        
        # Translation display component
        with gr.Row(visible=False) as translation_display:
            translation_text = gr.Textbox(
                label="Translation Information",
                interactive=False
            )
        
        # Loading indicator
        with gr.Row(visible=False) as loading_indicator:
            gr.Markdown('<div class="loading">Generating your ultra high resolution image... This may take a minute...</div>')
        
        # Output image with nicer styling
        output_img = gr.Image(label="Generated Image", elem_classes="output-image")
        
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                with gr.Column():
                    seed = gr.Number(
                        label="Random Seed",
                        value=123,
                        step=1,
                        minimum=0,
                    )
                    
                    cfg = gr.Slider(
                        label="CFG Scale (Creativity vs. Prompt Adherence)",
                        minimum=3,
                        maximum=10,
                        step=0.1,
                        value=4
                    )
                
                with gr.Column():
                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=1536,
                            maximum=5120,
                            step=32,
                            value=4096
                        )
                        
                        height = gr.Slider(
                            label="Height",
                            minimum=1536,
                            maximum=4096,
                            step=32,
                            value=2304
                        )
                    
                    timesteps = gr.Slider(
                        label="Timesteps (Quality vs. Speed)",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=20
                    )
                    
                    stage_a_tiled = gr.Checkbox(
                        label="Use Tiled Decoding (Lower Memory Usage)",
                        value=False
                    )
        
        # Aspect ratio presets
        with gr.Row():
            gr.Markdown("### Quick Aspect Ratio Presets")
            
        with gr.Row():
            preset_landscape = gr.Button("Landscape (16:9)", size="sm")
            preset_portrait = gr.Button("Portrait (9:16)", size="sm")
            preset_square = gr.Button("Square (1:1)", size="sm")
            preset_ultrawide = gr.Button("Ultrawide (21:9)", size="sm")
            
        # Examples with better organization
        gr.Markdown("### Example Prompts")
        with gr.Row():
            example_tabs = gr.Tabs([
                gr.TabItem("Nature", gr.Examples(
                    examples=[
                        "A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
                        "๋ˆˆ ๋ฎ์ธ ์‚ฐ๋งฅ์˜ ์žฅ์—„ํ•œ ์ „๊ฒฝ, ํ‘ธ๋ฅธ ํ•˜๋Š˜์„ ๋ฐฐ๊ฒฝ์œผ๋กœ ํ•œ ๊ณ ์š”ํ•œ ํ˜ธ์ˆ˜๊ฐ€ ์žˆ๋Š” ๋ชจ์Šต",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
                gr.TabItem("Animals", gr.Examples(
                    examples=[
                        "์Šค์›จํ„ฐ๋ฅผ ์ž…์€ ์•…์–ด",
                        "๊ณจ๋“  ๋ฆฌํŠธ๋ฆฌ๋ฒ„ ๊ฐ•์•„์ง€๊ฐ€ ํ‘ธ๋ฅธ ์ž”๋””๋ฐญ์—์„œ ๋นจ๊ฐ„ ๊ณต์„ ์ซ“๋Š” ๊ท€์—ฌ์šด ๋ชจ์Šต",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
                gr.TabItem("Anime", gr.Examples(
                    examples=[
                        "A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her.",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
                gr.TabItem("Architecture", gr.Examples(
                    examples=[
                        "A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
            ])

        # Function to set aspect ratio presets
        def set_landscape():
            return 5120, 2880
            
        def set_portrait():
            return 2880, 4096
            
        def set_square():
            return 3584, 3584
            
        def set_ultrawide():
            return 5120, 2160
            
        # Connect buttons to functions
        preset_landscape.click(set_landscape, outputs=[width, height])
        preset_portrait.click(set_portrait, outputs=[width, height])
        preset_square.click(set_square, outputs=[width, height])
        preset_ultrawide.click(set_ultrawide, outputs=[width, height])
        
        # Function to show Korean detection indicator
        def check_korean(text):
            if any('\uac00' <= char <= '\ud7a3' for char in text):
                return gr.update(visible=True)
            return gr.update(visible=False)
            
        # Connect events
        prompt.change(check_korean, inputs=[prompt], outputs=[language_indicator])
        generate_button.click(
            lambda: gr.update(visible=True),
            outputs=[loading_indicator]
        ).then(
            process_and_generate,
            inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled, translation_display],
            outputs=[output_img]
        ).then(
            lambda: gr.update(visible=False),
            outputs=[loading_indicator]
        )
        
        clear_button.click(clear_image, inputs=[], outputs=[output_img])

def download_with_wget(url, save_path):
    try:
        subprocess.run(['wget', url, '-O', save_path], check=True)
        print(f"Downloaded to {save_path}")
    except subprocess.CalledProcessError as e:
        print(f"Error downloading file: {e}")

def download_model():
    urls = [
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors', 
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors', 
    ]
    for file_url in urls:
        hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
    hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
    
if __name__ == "__main__":
    args = parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    download_model()
    config_file = args.config_c
    with open(config_file, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    
    core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    config_file_b = args.config_b
    with open(config_file_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)
        
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("STAGE C READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.bfloat16().eval().requires_grad_(False)
    print("STAGE B READY")
    
    pretrained_path = args.pretrained_path    
    sdd = torch.load(pretrained_path, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_norm.load_state_dict(collect_sd)
    models.generator.eval()
    models.train_norm.eval()
    
    demo.launch(debug=True, share=True)