Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,812 Bytes
38dd8f0 d5cff80 38dd8f0 852ded9 d30fa97 38dd8f0 d30fa97 852ded9 38dd8f0 d30fa97 38dd8f0 852ded9 38dd8f0 852ded9 38dd8f0 ecb47d1 38dd8f0 ecb47d1 38dd8f0 d30fa97 10c000d d30fa97 38dd8f0 10c000d 38dd8f0 10c000d 38dd8f0 10c000d 38dd8f0 10c000d 38dd8f0 d5cff80 d30fa97 d819968 d5cff80 d819968 d30fa97 d819968 1160b91 d819968 38dd8f0 1160b91 38dd8f0 4af64e1 2dfb3f5 4af64e1 2dfb3f5 4af64e1 2dfb3f5 4af64e1 2dfb3f5 4af64e1 d819968 ecb47d1 9bf26ec ecb47d1 9bf26ec d6f5e9d ecb47d1 da47978 015ec9d d6f5e9d df5b718 015ec9d df5b718 d30fa97 ecb47d1 df5b718 d6f5e9d df5b718 d6f5e9d df5b718 da47978 e87b1f0 2447d97 d6f5e9d 2447d97 49cf663 2447d97 49cf663 2447d97 d6f5e9d 2447d97 49cf663 2447d97 e87b1f0 ecb47d1 d30fa97 ecb47d1 d30fa97 ecb47d1 d30fa97 ecb47d1 2447d97 da47978 ecb47d1 df5b718 49cf663 da47978 2dfb3f5 da47978 d30fa97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
# ์๋จ์ import ์ถ๊ฐ
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ๋ฒ์ญ ํจ์ ์ถ๊ฐ
def translate_to_english(text: str) -> str:
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
try:
translated = translator(text)[0]['translation_text']
return translated
except Exception as e:
print(f"Translation error: {e}")
return text
return text
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# HF ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# ๋ชจ๋ธ ์ด๊ธฐํ
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN
)
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์"""
new_width = ((width + 7) // 8) * 8
new_height = ((height + 7) // 8) * 8
return new_width, new_height
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ"""
if aspect_ratio == "1:1":
return base_size, base_size
elif aspect_ratio == "16:9":
return base_size * 16 // 9, base_size
elif aspect_ratio == "9:16":
return base_size, base_size * 16 // 9
elif aspect_ratio == "4:3":
return base_size * 4 // 3, base_size
return base_size, base_size
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
"""๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ ํจ์"""
try:
# ์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ํฌ๊ธฐ ๊ณ์ฐ
width, height = calculate_dimensions(aspect_ratio)
# 8์ ๋ฐฐ์๋ก ์กฐ์
width, height = adjust_size_to_multiple_of_8(width, height)
with timer("Background generation"):
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=8,
guidance_scale=4.0,
).images[0]
return image
except Exception as e:
raise gr.Error(f"Background generation failed: {str(e)}")
def create_position_grid():
"""3x3 ์์น ์ ํ ๊ทธ๋ฆฌ๋๋ฅผ ์์ฑํ๋ HTML"""
return """
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
<button class="position-btn" data-pos="top-left">โ</button>
<button class="position-btn" data-pos="top-center">โ</button>
<button class="position-btn" data-pos="top-right">โ</button>
<button class="position-btn" data-pos="middle-left">โ</button>
<button class="position-btn" data-pos="middle-center">โข</button>
<button class="position-btn" data-pos="middle-right">โ</button>
<button class="position-btn" data-pos="bottom-left">โ</button>
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button>
<button class="position-btn" data-pos="bottom-right">โ</button>
</div>
<script>
const buttons = document.querySelectorAll('.position-btn');
buttons.forEach(btn => {
btn.style.width = '40px';
btn.style.height = '40px';
btn.style.border = '1px solid #ccc';
btn.style.borderRadius = '4px';
btn.style.cursor = 'pointer';
if (btn.dataset.default === 'true') {
btn.style.backgroundColor = '#2196F3';
btn.style.color = 'white';
}
});
</script>
"""
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ"""
bg_width, bg_height = bg_size
obj_width, obj_height = obj_size
positions = {
"top-left": (0, 0),
"top-center": ((bg_width - obj_width) // 2, 0),
"top-right": (bg_width - obj_width, 0),
"middle-left": (0, (bg_height - obj_height) // 2),
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
"bottom-left": (0, bg_height - obj_height),
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
}
return positions.get(position, positions["bottom-center"])
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """
width = int(image.width * scale_percent / 100)
height = int(image.height * scale_percent / 100)
return image.resize((width, height), Image.Resampling.LANCZOS)
def combine_with_background(foreground: Image.Image, background: Image.Image,
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์ค๋น
result = background.convert('RGBA')
# ์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์
scaled_foreground = resize_object(foreground, scale_percent)
# ์ค๋ธ์ ํธ ์์น ๊ณ์ฐ
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
# ํฉ์ฑ
result.paste(scaled_foreground, (x, y), scaled_foreground)
return result
@spaces.GPU
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
try:
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(prompt, tuple):
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
prompt = (x0, y0, x1, y1)
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
background = generate_background(bg_prompt, aspect_ratio)
combined = combine_with_background(masked_alpha, background)
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
except Exception as e:
raise gr.Error(f"Processing failed: {str(e)}")
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
# process_prompt ํจ์ ์์
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[Image.Image, Image.Image]:
try:
if img is None or prompt.strip() == "":
raise gr.Error("Please provide both image and prompt")
# ํ๋กฌํํธ ๋ฒ์ญ
prompt = translate_to_english(prompt)
if bg_prompt:
bg_prompt = translate_to_english(bg_prompt)
# Process the image
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
try:
if img is None or box_input.strip() == "":
raise gr.Error("Please provide both image and bounding box coordinates")
try:
coords = eval(box_input)
if not isinstance(coords, list) or len(coords) != 4:
raise ValueError("Invalid box format")
bbox = tuple(int(x) for x in coords)
except:
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
# Process the image
results, _ = _process(img, bbox)
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
# Event handler functions ์์
def update_process_button(img, prompt):
return gr.update(
interactive=bool(img and prompt),
variant="primary" if bool(img and prompt) else "secondary"
)
def update_box_button(img, box_input):
try:
if img and box_input:
coords = eval(box_input)
if isinstance(coords, list) and len(coords) == 4:
return gr.update(interactive=True, variant="primary")
return gr.update(interactive=False, variant="secondary")
except:
return gr.update(interactive=False, variant="secondary")
# CSS ์ ์
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 2em 0;
padding: 1em;
background: #f7f7f7;
border-radius: 10px;
}
.main-title h1 {
color: #2196F3;
font-size: 2.5em;
margin-bottom: 0.5em;
}
.main-title p {
color: #666;
font-size: 1.2em;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.tabs {
margin-top: 1em;
}
.input-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
button.primary {
background: #2196F3;
border: none;
color: white;
padding: 0.5em 1em;
border-radius: 4px;
cursor: pointer;
transition: background 0.3s ease;
}
button.primary:hover {
background: #1976D2;
}
.position-btn {
transition: all 0.3s ease;
}
.position-btn:hover {
background-color: #e3f2fd;
}
.position-btn.selected {
background-color: #2196F3;
color: white;
}
"""
# UI ๊ตฌ์ฑ
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-title">
<h1>๐จ Image Object Extractor</h1>
<p>Extract objects from images using text prompts</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
text_prompt = gr.Textbox(
label="Object to Extract",
placeholder="Enter what you want to extract...",
interactive=True
)
with gr.Row():
bg_prompt = gr.Textbox(
label="Background Prompt (optional)",
placeholder="Describe the background...",
interactive=True,
scale=3
)
aspect_ratio = gr.Dropdown(
choices=["1:1", "16:9", "9:16", "4:3"],
value="1:1",
label="Aspect Ratio",
interactive=True,
visible=True,
scale=1
)
# ์ค๋ธ์ ํธ ์์น์ ํฌ๊ธฐ ์กฐ์ ์ปจํธ๋กค
with gr.Row(visible=False) as object_controls:
with gr.Column(scale=1):
gr.HTML(create_position_grid())
position = gr.State(value="bottom-center")
with gr.Column(scale=1):
scale_slider = gr.Slider(
minimum=10,
maximum=200,
value=100,
step=10,
label="Object Size (%)"
)
process_btn = gr.Button(
"Process",
variant="primary",
interactive=False
)
with gr.Column(scale=1):
with gr.Row():
combined_image = gr.Image(
label="Combined Result",
show_download_button=True,
type="pil",
height=512
)
with gr.Row():
extracted_image = gr.Image(
label="Extracted Object",
show_download_button=True,
type="pil",
height=256
)
# Event bindings
input_image.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
text_prompt.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
def update_controls(bg_prompt):
"""๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์
๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์
๋ฐ์ดํธ"""
is_visible = bool(bg_prompt)
return [
gr.update(visible=is_visible), # aspect_ratio
gr.update(visible=is_visible), # object_controls
]
bg_prompt.change(
fn=update_controls,
inputs=bg_prompt,
outputs=[aspect_ratio, object_controls],
queue=False
)
# ์์น ์ ํ ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ
def update_position(evt: gr.SelectData) -> str:
"""์์น ์ ํ ์
๋ฐ์ดํธ"""
return evt.value
position.change(
fn=lambda x: gr.update(value=x),
inputs=position,
outputs=position
)
process_btn.click(
fn=process_prompt,
inputs=[
input_image,
text_prompt,
bg_prompt,
aspect_ratio,
position,
scale_slider
],
outputs=[combined_image, extracted_image],
queue=True
)
demo.queue(max_size=30, api_open=False)
demo.launch() |