File size: 13,994 Bytes
38dd8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d819968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
 
 
 
 
 
 
 
d819968
 
 
 
 
 
 
 
 
 
 
 
 
 
38dd8f0
 
2dfb3f5
 
 
 
 
d819968
2dfb3f5
 
 
 
 
 
 
 
 
d819968
 
9bf26ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f5e9d
152a45e
e87b1f0
da47978
015ec9d
 
d6f5e9d
015ec9d
 
 
 
e87b1f0
d819968
e87b1f0
d6f5e9d
49cf663
2447d97
da47978
2447d97
152a45e
da47978
e87b1f0
 
 
 
 
 
 
 
 
 
2447d97
d6f5e9d
 
49cf663
da47978
 
49cf663
e87b1f0
d6f5e9d
 
49cf663
da47978
2447d97
d6f5e9d
49cf663
da47978
ead5832
d819968
e87b1f0
d6f5e9d
49cf663
e87b1f0
 
 
 
 
 
 
d819968
49cf663
da47978
d6f5e9d
2447d97
d6f5e9d
49cf663
da47978
 
49cf663
e87b1f0
d6f5e9d
 
49cf663
da47978
d6f5e9d
d819968
49cf663
da47978
 
e87b1f0
2447d97
d6f5e9d
2447d97
49cf663
 
2447d97
49cf663
2447d97
d6f5e9d
2447d97
49cf663
 
2447d97
e87b1f0
2447d97
da47978
d6f5e9d
49cf663
 
da47978
 
e87b1f0
2dfb3f5
 
 
 
 
 
 
 
e87b1f0
49cf663
 
da47978
e87b1f0
d6f5e9d
da47978
e87b1f0
49cf663
 
da47978
2dfb3f5
da47978
2dfb3f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download

import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline

BoundingBox = tuple[int, int, int, int]

pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# HF 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("Please set the HF_TOKEN environment variable")

try:
    login(token=HF_TOKEN)
except Exception as e:
    raise ValueError(f"Failed to login to Hugging Face: {str(e)}")

# 모델 초기화
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)

gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)

# FLUX 파이프라인 초기화
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16,
    use_auth_token=HF_TOKEN
)
pipe.load_lora_weights(
    hf_hub_download(
        "ByteDance/Hyper-SD",
        "Hyper-FLUX.1-dev-8steps-lora.safetensors",
        use_auth_token=HF_TOKEN
    )
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
    if not bboxes:
        return None
    for bbox in bboxes:
        assert len(bbox) == 4
        assert all(isinstance(x, int) for x in bbox)
    return (
        min(bbox[0] for bbox in bboxes),
        min(bbox[1] for bbox in bboxes),
        max(bbox[2] for bbox in bboxes),
        max(bbox[3] for bbox in bboxes),
    )

def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
    x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
    return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)

def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
    inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
    with no_grad():
        outputs = gd_model(**inputs)
    width, height = img.size
    results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
        outputs,
        inputs["input_ids"],
        target_sizes=[(height, width)],
    )[0]
    assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
    bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
    return bbox_union(bboxes.numpy().tolist())

def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
    assert img.size == mask_img.size
    img = img.convert("RGB")
    mask_img = mask_img.convert("L")
    if defringe:
        rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
        foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
        img = Image.fromarray((foreground * 255).astype("uint8"))
    result = Image.new("RGBA", img.size)
    result.paste(img, (0, 0), mask_img)
    return result

def generate_background(prompt: str, width: int, height: int) -> Image.Image:
    """배경 이미지 생성 함수"""
    try:
        with timer("Background generation"):
            image = pipe(
                prompt=prompt,
                width=width,
                height=height,
                num_inference_steps=8,
                guidance_scale=4.0,
            ).images[0]
        return image
    except Exception as e:
        raise gr.Error(f"Background generation failed: {str(e)}")

def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
    """전경과 배경 합성 함수"""
    background = background.resize(foreground.size)
    return Image.alpha_composite(background.convert('RGBA'), foreground)

@spaces.GPU
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
    time_log: list[str] = []
    if isinstance(prompt, str):
        t0 = time.time()
        bbox = gd_detect(img, prompt)
        time_log.append(f"detect: {time.time() - t0}")
        if not bbox:
            print(time_log[0])
            raise gr.Error("No object detected")
    else:
        bbox = prompt
    t0 = time.time()
    mask = segmenter(img, bbox)
    time_log.append(f"segment: {time.time() - t0}")
    return mask, bbox, time_log

def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
    if img.width > 2048 or img.height > 2048:
        orig_res = max(img.width, img.height)
        img.thumbnail((2048, 2048))
        if isinstance(prompt, tuple):
            x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
            prompt = (x0, y0, x1, y1)

    mask, bbox, time_log = _gpu_process(img, prompt)
    masked_alpha = apply_mask(img, mask, defringe=True)

    if bg_prompt:
        try:
            background = generate_background(bg_prompt, img.width, img.height)
            combined = combine_with_background(masked_alpha, background)
        except Exception as e:
            raise gr.Error(f"Background processing failed: {str(e)}")
    else:
        combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)

    thresholded = mask.point(lambda p: 255 if p > 10 else 0)
    bbox = thresholded.getbbox()
    to_dl = masked_alpha.crop(bbox)

    temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
    to_dl.save(temp, format="PNG")
    temp.close()

    return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)

def process_bbox(img: Image.Image, box_input: str) -> tuple[list[Image.Image], str]:
    try:
        if img is None or box_input.strip() == "":
            raise gr.Error("Please provide both image and bounding box coordinates")
        
        # Parse box coordinates
        try:
            coords = eval(box_input)
            if not isinstance(coords, list) or len(coords) != 4:
                raise ValueError("Invalid box format")
            bbox = tuple(int(x) for x in coords)
        except:
            raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
        
        # Process the image
        results, download_path = _process(img, bbox)
        
        # Convert results to list for gallery
        gallery_images = list(results)
        
        return gallery_images, download_path
    except Exception as e:
        raise gr.Error(str(e))


def on_change_bbox(prompts: dict[str, Any] | None):
    return gr.update(interactive=prompts is not None)


def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
    return gr.update(interactive=bool(img and prompt))

def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[list[Image.Image], str]:
    try:
        if img is None or prompt.strip() == "":
            raise gr.Error("Please provide both image and prompt")
        
        # Process the image
        results, download_path = _process(img, prompt, bg_prompt)
        
        # Convert results to list for gallery
        gallery_images = list(results)
        
        return gallery_images, download_path
    except Exception as e:
        raise gr.Error(str(e))


def update_process_button(img, prompt):
    return gr.Button.update(
        interactive=bool(img and prompt),
        variant="primary" if bool(img and prompt) else "secondary"
    )
    
def update_box_button(img, box_input):
    try:
        if img and box_input:
            coords = eval(box_input)
            if isinstance(coords, list) and len(coords) == 4:
                return gr.Button.update(interactive=True, variant="primary")
        return gr.Button.update(interactive=False, variant="secondary")
    except:
        return gr.Button.update(interactive=False, variant="secondary")


# 맨 앞부분에 CSS 정의 추가
css = """
footer {display: none}
.main-title {
    text-align: center;
    margin: 2em 0;
    padding: 1em;
    background: #f7f7f7;
    border-radius: 10px;
}
.main-title h1 {
    color: #2196F3;
    font-size: 2.5em;
    margin-bottom: 0.5em;
}
.main-title p {
    color: #666;
    font-size: 1.2em;
}
.container {
    max-width: 1200px;
    margin: auto;
    padding: 20px;
}
.tabs {
    margin-top: 1em;
}
.input-group {
    background: white;
    padding: 1em;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-group {
    background: white;
    padding: 1em;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
button.primary {
    background: #2196F3;
    border: none;
    color: white;
    padding: 0.5em 1em;
    border-radius: 4px;
    cursor: pointer;
    transition: background 0.3s ease;
}
button.primary:hover {
    background: #1976D2;
}
"""

# UI 부분만 수정
# Main Gradio app
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML("""
        <div class="main-title">
            <h1>🎨 Image Object Extractor</h1>
            <p>Extract objects from images using text prompts or bounding boxes</p>
        </div>
    """)

    with gr.Tabs(selected=0):
        # Text-based extraction tab
        with gr.TabItem("Extract by Text"):
            with gr.Row():
                with gr.Column(scale=1):
                    input_image = gr.Image(
                        type="pil",
                        label="Upload Image",
                        interactive=True
                    )
                    text_prompt = gr.Textbox(
                        label="Object to Extract",
                        placeholder="Enter what you want to extract...",
                        interactive=True
                    )
                    bg_prompt = gr.Textbox(
                        label="Background Prompt (optional)",
                        placeholder="Describe the background...",
                        interactive=True
                    )
                    process_btn = gr.Button(
                        "Process",
                        variant="primary",
                        interactive=False
                    )

                with gr.Column(scale=1):
                    output_display = gr.Gallery(
                        label="Results",
                        show_download_button=False,
                        visible=True
                    )
                    download_btn = gr.DownloadButton(
                        "Download Result",
                        visible=True
                    )

        # Box-based extraction tab
        with gr.TabItem("Extract by Box"):
            with gr.Row():
                with gr.Column(scale=1):
                    box_image = gr.Image(
                        type="pil",
                        label="Upload Image for Box",
                        interactive=True
                    )
                    box_input = gr.Textbox(
                        label="Bounding Box (xmin, ymin, xmax, ymax)",
                        placeholder="Enter coordinates as [x1, y1, x2, y2]",
                        interactive=True
                    )
                    box_btn = gr.Button(
                        "Extract Selection",
                        variant="primary",
                        interactive=False
                    )

                with gr.Column(scale=1):
                    box_output = gr.Gallery(
                        label="Results",
                        show_download_button=False,
                        visible=True
                    )
                    box_download = gr.DownloadButton(
                        "Download Result",
                        visible=True
                    )

    # Event bindings
    input_image.change(
        fn=update_process_button,
        inputs=[input_image, text_prompt],
        outputs=process_btn,
        queue=False
    )
    
    text_prompt.change(
        fn=update_process_button,
        inputs=[input_image, text_prompt],
        outputs=process_btn,
        queue=False
    )

    process_btn.click(
        fn=process_prompt,
        inputs=[input_image, text_prompt, bg_prompt],
        outputs=[output_display, download_btn],
        queue=True
    )

    box_image.change(
        fn=update_box_button,
        inputs=[box_image, box_input],
        outputs=box_btn,
        queue=False
    )

    box_input.change(
        fn=update_box_button,
        inputs=[box_image, box_input],
        outputs=box_btn,
        queue=False
    )

    box_btn.click(
        fn=process_bbox,
        inputs=[box_image, box_input],
        outputs=[box_output, box_download],
        queue=True
    )

demo.queue(max_size=30, api_open=False)
demo.launch()