import tempfile import time from collections.abc import Sequence from typing import Any, cast import os from huggingface_hub import login, hf_hub_download import gradio as gr import numpy as np import pillow_heif import spaces import torch from gradio_image_annotation import image_annotator from gradio_imageslider import ImageSlider from PIL import Image from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml from refiners.fluxion.utils import no_grad from refiners.solutions import BoxSegmenter from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor from diffusers import FluxPipeline # 상단에 import 추가 from transformers import pipeline translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") # 번역 함수 추가 def translate_to_english(text: str) -> str: """한글 텍스트를 영어로 번역""" if any(ord('가') <= ord(char) <= ord('힣') for char in text): try: translated = translator(text)[0]['translation_text'] return translated except Exception as e: print(f"Translation error: {e}") return text return text BoundingBox = tuple[int, int, int, int] pillow_heif.register_heif_opener() pillow_heif.register_avif_opener() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # HF 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable") try: login(token=HF_TOKEN) except Exception as e: raise ValueError(f"Failed to login to Hugging Face: {str(e)}") # 모델 초기화 segmenter = BoxSegmenter(device="cpu") segmenter.device = device segmenter.model = segmenter.model.to(device=segmenter.device) gd_model_path = "IDEA-Research/grounding-dino-base" gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) gd_model = gd_model.to(device=device) assert isinstance(gd_model, GroundingDinoForObjectDetection) # FLUX 파이프라인 초기화 pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN ) pipe.load_lora_weights( hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors", use_auth_token=HF_TOKEN ) ) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: if not bboxes: return None for bbox in bboxes: assert len(bbox) == 4 assert all(isinstance(x, int) for x in bbox) return ( min(bbox[0] for bbox in bboxes), min(bbox[1] for bbox in bboxes), max(bbox[2] for bbox in bboxes), max(bbox[3] for bbox in bboxes), ) def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) with no_grad(): outputs = gd_model(**inputs) width, height = img.size results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( outputs, inputs["input_ids"], target_sizes=[(height, width)], )[0] assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) return bbox_union(bboxes.numpy().tolist()) def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: assert img.size == mask_img.size img = img.convert("RGB") mask_img = mask_img.convert("L") if defringe: rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) img = Image.fromarray((foreground * 255).astype("uint8")) result = Image.new("RGBA", img.size) result.paste(img, (0, 0), mask_img) return result def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]: """이미지 크기를 8의 배수로 조정하는 함수""" new_width = ((width + 7) // 8) * 8 new_height = ((height + 7) // 8) * 8 return new_width, new_height def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]: """선택된 비율에 따라 이미지 크기 계산""" if aspect_ratio == "1:1": return base_size, base_size elif aspect_ratio == "16:9": return base_size * 16 // 9, base_size elif aspect_ratio == "9:16": return base_size, base_size * 16 // 9 elif aspect_ratio == "4:3": return base_size * 4 // 3, base_size return base_size, base_size def generate_background(prompt: str, aspect_ratio: str) -> Image.Image: """배경 이미지 생성 함수""" try: # 선택된 비율에 따라 크기 계산 width, height = calculate_dimensions(aspect_ratio) # 8의 배수로 조정 width, height = adjust_size_to_multiple_of_8(width, height) with timer("Background generation"): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=8, guidance_scale=4.0, ).images[0] return image except Exception as e: raise gr.Error(f"Background generation failed: {str(e)}") def create_position_grid(): """3x3 위치 선택 그리드를 생성하는 HTML""" return """
""" def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]: """오브젝트의 위치 계산""" bg_width, bg_height = bg_size obj_width, obj_height = obj_size positions = { "top-left": (0, 0), "top-center": ((bg_width - obj_width) // 2, 0), "top-right": (bg_width - obj_width, 0), "middle-left": (0, (bg_height - obj_height) // 2), "middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2), "middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2), "bottom-left": (0, bg_height - obj_height), "bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height), "bottom-right": (bg_width - obj_width, bg_height - obj_height) } return positions.get(position, positions["bottom-center"]) def resize_object(image: Image.Image, scale_percent: float) -> Image.Image: """오브젝트 크기 조정""" width = int(image.width * scale_percent / 100) height = int(image.height * scale_percent / 100) return image.resize((width, height), Image.Resampling.LANCZOS) def combine_with_background(foreground: Image.Image, background: Image.Image, position: str = "bottom-center", scale_percent: float = 100) -> Image.Image: """전경과 배경 합성 함수""" # 배경 이미지 준비 result = background.convert('RGBA') # 오브젝트 크기 조정 scaled_foreground = resize_object(foreground, scale_percent) # 오브젝트 위치 계산 x, y = calculate_object_position(position, result.size, scaled_foreground.size) # 합성 result.paste(scaled_foreground, (x, y), scaled_foreground) return result @spaces.GPU def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: time_log: list[str] = [] if isinstance(prompt, str): t0 = time.time() bbox = gd_detect(img, prompt) time_log.append(f"detect: {time.time() - t0}") if not bbox: print(time_log[0]) raise gr.Error("No object detected") else: bbox = prompt t0 = time.time() mask = segmenter(img, bbox) time_log.append(f"segment: {time.time() - t0}") return mask, bbox, time_log def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: try: if img.width > 2048 or img.height > 2048: orig_res = max(img.width, img.height) img.thumbnail((2048, 2048)) if isinstance(prompt, tuple): x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) prompt = (x0, y0, x1, y1) mask, bbox, time_log = _gpu_process(img, prompt) masked_alpha = apply_mask(img, mask, defringe=True) if bg_prompt: background = generate_background(bg_prompt, aspect_ratio) combined = combine_with_background(masked_alpha, background) else: combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) thresholded = mask.point(lambda p: 255 if p > 10 else 0) bbox = thresholded.getbbox() to_dl = masked_alpha.crop(bbox) temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") to_dl.save(temp, format="PNG") temp.close() return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) except Exception as e: raise gr.Error(f"Processing failed: {str(e)}") def on_change_bbox(prompts: dict[str, Any] | None): return gr.update(interactive=prompts is not None) def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): return gr.update(interactive=bool(img and prompt)) # process_prompt 함수 수정 def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[Image.Image, Image.Image]: try: if img is None or prompt.strip() == "": raise gr.Error("Please provide both image and prompt") # 프롬프트 번역 prompt = translate_to_english(prompt) if bg_prompt: bg_prompt = translate_to_english(bg_prompt) # Process the image results, _ = _process(img, prompt, bg_prompt, aspect_ratio) # 합성된 이미지와 추출된 이미지만 반환 return results[1], results[2] except Exception as e: raise gr.Error(str(e)) def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]: try: if img is None or box_input.strip() == "": raise gr.Error("Please provide both image and bounding box coordinates") try: coords = eval(box_input) if not isinstance(coords, list) or len(coords) != 4: raise ValueError("Invalid box format") bbox = tuple(int(x) for x in coords) except: raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]") # Process the image results, _ = _process(img, bbox) # 합성된 이미지와 추출된 이미지만 반환 return results[1], results[2] except Exception as e: raise gr.Error(str(e)) # Event handler functions 수정 def update_process_button(img, prompt): return gr.update( interactive=bool(img and prompt), variant="primary" if bool(img and prompt) else "secondary" ) def update_box_button(img, box_input): try: if img and box_input: coords = eval(box_input) if isinstance(coords, list) and len(coords) == 4: return gr.update(interactive=True, variant="primary") return gr.update(interactive=False, variant="secondary") except: return gr.update(interactive=False, variant="secondary") # CSS 정의 css = """ footer {display: none} .main-title { text-align: center; margin: 2em 0; padding: 1em; background: #f7f7f7; border-radius: 10px; } .main-title h1 { color: #2196F3; font-size: 2.5em; margin-bottom: 0.5em; } .main-title p { color: #666; font-size: 1.2em; } .container { max-width: 1200px; margin: auto; padding: 20px; } .tabs { margin-top: 1em; } .input-group { background: white; padding: 1em; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .output-group { background: white; padding: 1em; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } button.primary { background: #2196F3; border: none; color: white; padding: 0.5em 1em; border-radius: 4px; cursor: pointer; transition: background 0.3s ease; } button.primary:hover { background: #1976D2; } .position-btn { transition: all 0.3s ease; } .position-btn:hover { background-color: #e3f2fd; } .position-btn.selected { background-color: #2196F3; color: white; } """ # UI 구성 with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML("""

🎨 Image Object Extractor

Extract objects from images using text prompts

""") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image( type="pil", label="Upload Image", interactive=True ) text_prompt = gr.Textbox( label="Object to Extract", placeholder="Enter what you want to extract...", interactive=True ) with gr.Row(): bg_prompt = gr.Textbox( label="Background Prompt (optional)", placeholder="Describe the background...", interactive=True, scale=3 ) aspect_ratio = gr.Dropdown( choices=["1:1", "16:9", "9:16", "4:3"], value="1:1", label="Aspect Ratio", interactive=True, visible=True, scale=1 ) # 오브젝트 위치와 크기 조정 컨트롤 with gr.Row(visible=False) as object_controls: with gr.Column(scale=1): gr.HTML(create_position_grid()) position = gr.State(value="bottom-center") with gr.Column(scale=1): scale_slider = gr.Slider( minimum=10, maximum=200, value=100, step=10, label="Object Size (%)" ) process_btn = gr.Button( "Process", variant="primary", interactive=False ) with gr.Column(scale=1): with gr.Row(): combined_image = gr.Image( label="Combined Result", show_download_button=True, type="pil", height=512 ) with gr.Row(): extracted_image = gr.Image( label="Extracted Object", show_download_button=True, type="pil", height=256 ) # Event bindings input_image.change( fn=update_process_button, inputs=[input_image, text_prompt], outputs=process_btn, queue=False ) text_prompt.change( fn=update_process_button, inputs=[input_image, text_prompt], outputs=process_btn, queue=False ) def update_controls(bg_prompt): """배경 프롬프트 입력 여부에 따라 컨트롤 표시 업데이트""" is_visible = bool(bg_prompt) return [ gr.update(visible=is_visible), # aspect_ratio gr.update(visible=is_visible), # object_controls ] bg_prompt.change( fn=update_controls, inputs=bg_prompt, outputs=[aspect_ratio, object_controls], queue=False ) # 위치 선택 버튼 클릭 이벤트 def update_position(evt: gr.SelectData) -> str: """위치 선택 업데이트""" return evt.value position.change( fn=lambda x: gr.update(value=x), inputs=position, outputs=position ) process_btn.click( fn=process_prompt, inputs=[ input_image, text_prompt, bg_prompt, aspect_ratio, position, scale_slider ], outputs=[combined_image, extracted_image], queue=True ) demo.queue(max_size=30, api_open=False) demo.launch()