import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
# 상단에 import 추가
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# 번역 함수 추가
def translate_to_english(text: str) -> str:
"""한글 텍스트를 영어로 번역"""
if any(ord('가') <= ord(char) <= ord('힣') for char in text):
try:
translated = translator(text)[0]['translation_text']
return translated
except Exception as e:
print(f"Translation error: {e}")
return text
return text
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# HF 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# 모델 초기화
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# FLUX 파이프라인 초기화
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN
)
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
"""이미지 크기를 8의 배수로 조정하는 함수"""
new_width = ((width + 7) // 8) * 8
new_height = ((height + 7) // 8) * 8
return new_width, new_height
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
"""선택된 비율에 따라 이미지 크기 계산"""
if aspect_ratio == "1:1":
return base_size, base_size
elif aspect_ratio == "16:9":
return base_size * 16 // 9, base_size
elif aspect_ratio == "9:16":
return base_size, base_size * 16 // 9
elif aspect_ratio == "4:3":
return base_size * 4 // 3, base_size
return base_size, base_size
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
"""배경 이미지 생성 함수"""
try:
# 선택된 비율에 따라 크기 계산
width, height = calculate_dimensions(aspect_ratio)
# 8의 배수로 조정
width, height = adjust_size_to_multiple_of_8(width, height)
with timer("Background generation"):
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=8,
guidance_scale=4.0,
).images[0]
return image
except Exception as e:
raise gr.Error(f"Background generation failed: {str(e)}")
def create_position_grid():
"""3x3 위치 선택 그리드를 생성하는 HTML"""
return """
"""
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
"""오브젝트의 위치 계산"""
bg_width, bg_height = bg_size
obj_width, obj_height = obj_size
positions = {
"top-left": (0, 0),
"top-center": ((bg_width - obj_width) // 2, 0),
"top-right": (bg_width - obj_width, 0),
"middle-left": (0, (bg_height - obj_height) // 2),
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
"bottom-left": (0, bg_height - obj_height),
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
}
return positions.get(position, positions["bottom-center"])
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
"""오브젝트 크기 조정"""
width = int(image.width * scale_percent / 100)
height = int(image.height * scale_percent / 100)
return image.resize((width, height), Image.Resampling.LANCZOS)
def combine_with_background(foreground: Image.Image, background: Image.Image,
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
"""전경과 배경 합성 함수"""
# 배경 이미지 준비
result = background.convert('RGBA')
# 오브젝트 크기 조정
scaled_foreground = resize_object(foreground, scale_percent)
# 오브젝트 위치 계산
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
# 합성
result.paste(scaled_foreground, (x, y), scaled_foreground)
return result
@spaces.GPU
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
try:
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(prompt, tuple):
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
prompt = (x0, y0, x1, y1)
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
background = generate_background(bg_prompt, aspect_ratio)
combined = combine_with_background(masked_alpha, background)
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
except Exception as e:
raise gr.Error(f"Processing failed: {str(e)}")
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
# process_prompt 함수 수정
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[Image.Image, Image.Image]:
try:
if img is None or prompt.strip() == "":
raise gr.Error("Please provide both image and prompt")
# 프롬프트 번역
prompt = translate_to_english(prompt)
if bg_prompt:
bg_prompt = translate_to_english(bg_prompt)
# Process the image
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
# 합성된 이미지와 추출된 이미지만 반환
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
try:
if img is None or box_input.strip() == "":
raise gr.Error("Please provide both image and bounding box coordinates")
try:
coords = eval(box_input)
if not isinstance(coords, list) or len(coords) != 4:
raise ValueError("Invalid box format")
bbox = tuple(int(x) for x in coords)
except:
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
# Process the image
results, _ = _process(img, bbox)
# 합성된 이미지와 추출된 이미지만 반환
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
# Event handler functions 수정
def update_process_button(img, prompt):
return gr.update(
interactive=bool(img and prompt),
variant="primary" if bool(img and prompt) else "secondary"
)
def update_box_button(img, box_input):
try:
if img and box_input:
coords = eval(box_input)
if isinstance(coords, list) and len(coords) == 4:
return gr.update(interactive=True, variant="primary")
return gr.update(interactive=False, variant="secondary")
except:
return gr.update(interactive=False, variant="secondary")
# CSS 정의
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 2em 0;
padding: 1em;
background: #f7f7f7;
border-radius: 10px;
}
.main-title h1 {
color: #2196F3;
font-size: 2.5em;
margin-bottom: 0.5em;
}
.main-title p {
color: #666;
font-size: 1.2em;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.tabs {
margin-top: 1em;
}
.input-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
button.primary {
background: #2196F3;
border: none;
color: white;
padding: 0.5em 1em;
border-radius: 4px;
cursor: pointer;
transition: background 0.3s ease;
}
button.primary:hover {
background: #1976D2;
}
.position-btn {
transition: all 0.3s ease;
}
.position-btn:hover {
background-color: #e3f2fd;
}
.position-btn.selected {
background-color: #2196F3;
color: white;
}
"""
# UI 구성
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
🎨 Image Object Extractor
Extract objects from images using text prompts
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
text_prompt = gr.Textbox(
label="Object to Extract",
placeholder="Enter what you want to extract...",
interactive=True
)
with gr.Row():
bg_prompt = gr.Textbox(
label="Background Prompt (optional)",
placeholder="Describe the background...",
interactive=True,
scale=3
)
aspect_ratio = gr.Dropdown(
choices=["1:1", "16:9", "9:16", "4:3"],
value="1:1",
label="Aspect Ratio",
interactive=True,
visible=True,
scale=1
)
# 오브젝트 위치와 크기 조정 컨트롤
with gr.Row(visible=False) as object_controls:
with gr.Column(scale=1):
gr.HTML(create_position_grid())
position = gr.State(value="bottom-center")
with gr.Column(scale=1):
scale_slider = gr.Slider(
minimum=10,
maximum=200,
value=100,
step=10,
label="Object Size (%)"
)
process_btn = gr.Button(
"Process",
variant="primary",
interactive=False
)
with gr.Column(scale=1):
with gr.Row():
combined_image = gr.Image(
label="Combined Result",
show_download_button=True,
type="pil",
height=512
)
with gr.Row():
extracted_image = gr.Image(
label="Extracted Object",
show_download_button=True,
type="pil",
height=256
)
# Event bindings
input_image.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
text_prompt.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
def update_controls(bg_prompt):
"""배경 프롬프트 입력 여부에 따라 컨트롤 표시 업데이트"""
is_visible = bool(bg_prompt)
return [
gr.update(visible=is_visible), # aspect_ratio
gr.update(visible=is_visible), # object_controls
]
bg_prompt.change(
fn=update_controls,
inputs=bg_prompt,
outputs=[aspect_ratio, object_controls],
queue=False
)
# 위치 선택 버튼 클릭 이벤트
def update_position(evt: gr.SelectData) -> str:
"""위치 선택 업데이트"""
return evt.value
position.change(
fn=lambda x: gr.update(value=x),
inputs=position,
outputs=position
)
process_btn.click(
fn=process_prompt,
inputs=[
input_image,
text_prompt,
bg_prompt,
aspect_ratio,
position,
scale_slider
],
outputs=[combined_image, extracted_image],
queue=True
)
demo.queue(max_size=30, api_open=False)
demo.launch()