|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
from threading import Thread |
|
|
|
|
|
tokenizer = GemmaTokenizerFast.from_pretrained("buddhist-nlp/gemma2-mitra-bo-instruct") |
|
model = AutoModelForCausalLM.from_pretrained("buddhist-nlp/gemma2-mitra-bo-instruct", torch_dtype=torch.float16).to('cuda:0') |
|
|
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
|
|
stop_ids = [29, 0] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
|
|
def predict(message, history): |
|
|
|
history_transformer_format = history + [[message, ""]] |
|
stop = StopOnTokens() |
|
|
|
|
|
messages = "".join([f"\n### user : {item[0]} \n### bot : {item[1]}" for item in history_transformer_format]) |
|
|
|
|
|
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
) |
|
|
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
partial_message = "" |
|
for new_token in streamer: |
|
if new_token != '<': |
|
partial_message += new_token |
|
yield partial_message |
|
|
|
|
|
gr.ChatInterface(fn=predict, title="Gemma LLM Chatbot", description="Chat with the Gemma model using real-time generation and streaming.").launch(share=True) |
|
|