demo / app.py
TenzinGayche's picture
Update app.py
3ed952b verified
import os
from threading import Thread, Event
from typing import Iterator
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
DESCRIPTION = """\
# Monlam LLM v2.0.1
"""
path="TenzinGayche/tpo_v1.0.0_ep2_dpo_ft"
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Load the model and tokenizer
tokenizer = GemmaTokenizerFast.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16).to("cuda")
model.config.sliding_window = 4096
model.eval()
# Create a shared stop event
stop_event = Event()
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 2048,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
do_sample: bool= False
) -> Iterator[str]:
# Clear the stop event before starting a new generation
stop_event.clear()
# Append the user's message to the conversation history
conversation = chat_history.copy()
if not conversation:
conversation.extend([
{
"role": "user",
"content": "ཁྱེད་རང་སྨོན་ལམ་མི་བཟོས་རིག་ནུས་ཤིག་ཡིན་པ་དང་ཁྱེད་རང་མི་བཟོས་རིག་ནུས་(AI)ཤིག་ཡིན།"
},
{
"role": "assistant",
"content": "ལགས་སོ། ང་ཡིས་ཁྱེད་ཀྱི་བཀའ་བཞིན་སྒྲུབ་ཆོག"
}
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Create a streamer to get the generated response
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
)
# Run generation in a background thread
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
if stop_event.is_set():
break # Stop if the stop button is pressed
outputs.append(text)
yield "".join(outputs)
# After generation, append the assistant's response to the chat history
assistant_response = "".join(outputs)
chat_history.append({"role": "assistant", "content": assistant_response})
# Define a function to stop the generation
def stop_generation():
stop_event.set()
# Create the chat interface with additional inputs and the stop button
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
# Create the chat interface
chat_interface = gr.ChatInterface(
fn=generate,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
type="messages",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)