|
import os |
|
from threading import Thread, Event |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer |
|
DESCRIPTION = """\ |
|
# Monlam LLM v2.0.1 |
|
""" |
|
path="TenzinGayche/tpo_v1.0.0_ep2_dpo_ft" |
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
|
|
tokenizer = GemmaTokenizerFast.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16).to("cuda") |
|
|
|
model.config.sliding_window = 4096 |
|
model.eval() |
|
|
|
|
|
stop_event = Event() |
|
|
|
def generate( |
|
message: str, |
|
chat_history: list[dict], |
|
max_new_tokens: int = 2048, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
do_sample: bool= False |
|
) -> Iterator[str]: |
|
|
|
stop_event.clear() |
|
|
|
|
|
|
|
conversation = chat_history.copy() |
|
if not conversation: |
|
conversation.extend([ |
|
{ |
|
"role": "user", |
|
"content": "ཁྱེད་རང་སྨོན་ལམ་མི་བཟོས་རིག་ནུས་ཤིག་ཡིན་པ་དང་ཁྱེད་རང་མི་བཟོས་རིག་ནུས་(AI)ཤིག་ཡིན།" |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": "ལགས་སོ། ང་ཡིས་ཁྱེད་ཀྱི་བཀའ་བཞིན་སྒྲུབ་ཆོག" |
|
} |
|
]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
|
|
) |
|
|
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
if stop_event.is_set(): |
|
break |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
assistant_response = "".join(outputs) |
|
chat_history.append({"role": "assistant", "content": assistant_response}) |
|
|
|
|
|
|
|
def stop_generation(): |
|
stop_event.set() |
|
|
|
|
|
with gr.Blocks(css="style.css", fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
examples=[ |
|
["Hello there! How are you doing?"], |
|
["Can you explain briefly to me what is the Python programming language?"], |
|
["Explain the plot of Cinderella in a sentence."], |
|
["How many hours does it take a man to eat a Helicopter?"], |
|
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(share=True) |
|
|