TenzinGayche commited on
Commit
e7e3941
·
verified ·
1 Parent(s): e573bba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -8,7 +8,7 @@ import torch
8
  from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
9
 
10
  DESCRIPTION = """\
11
- # Monlam LLM
12
  """
13
 
14
  MAX_MAX_NEW_TOKENS = 2048
@@ -16,8 +16,8 @@ DEFAULT_MAX_NEW_TOKENS = 1024
16
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
17
 
18
  # Load the model and tokenizer
19
- tokenizer = GemmaTokenizerFast.from_pretrained("TenzinGayche/example")
20
- model = AutoModelForCausalLM.from_pretrained("TenzinGayche/example", torch_dtype=torch.float16).to("cuda")
21
 
22
  model.config.sliding_window = 4096
23
  model.eval()
@@ -37,8 +37,20 @@ def generate(
37
  # Clear the stop event before starting a new generation
38
  stop_event.clear()
39
 
 
40
  # Append the user's message to the conversation history
41
  conversation = chat_history.copy()
 
 
 
 
 
 
 
 
 
 
 
42
  conversation.append({"role": "user", "content": message})
43
 
44
  input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
 
8
  from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
9
 
10
  DESCRIPTION = """\
11
+ # Monlam LLM v2.0.1
12
  """
13
 
14
  MAX_MAX_NEW_TOKENS = 2048
 
16
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
17
 
18
  # Load the model and tokenizer
19
+ tokenizer = GemmaTokenizerFast.from_pretrained("example_v1.0.2")
20
+ model = AutoModelForCausalLM.from_pretrained("example_v1.0.2", torch_dtype=torch.float16).to("cuda")
21
 
22
  model.config.sliding_window = 4096
23
  model.eval()
 
37
  # Clear the stop event before starting a new generation
38
  stop_event.clear()
39
 
40
+
41
  # Append the user's message to the conversation history
42
  conversation = chat_history.copy()
43
+ if not conversation:
44
+ conversation.extend([
45
+ {
46
+ "role": "user",
47
+ "content": "ཁྱེད་རང་སྨོན་ལམ་མི་བཟོས་རིག་ནུས་ཤིག་ཡིན་པ་དང་ཁྱེད་རང་མི་བཟོས་རིག་ནུས་(AI)ཤིག་ཡིན།"
48
+ },
49
+ {
50
+ "role": "assistant",
51
+ "content": "ལགས་སོ། ང་ཡིས་ཁྱེད་ཀྱི་བཀའ་བཞིན་སྒྲུབ་ཆོག"
52
+ }
53
+ ])
54
  conversation.append({"role": "user", "content": message})
55
 
56
  input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")