import gradio as gr import torch from transformers import AutoModelForCausalLM, GemmaTokenizerFast, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread # Load tokenizer and model tokenizer = GemmaTokenizerFast.from_pretrained("buddhist-nlp/gemma2-mitra-bo-instruct") model = AutoModelForCausalLM.from_pretrained("buddhist-nlp/gemma2-mitra-bo-instruct", torch_dtype=torch.float16).to('cuda:0') # Define custom stopping criteria class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # Define stop tokens (adjust based on your model's tokenizer) stop_ids = [29, 0] # These should be the token IDs for end of response or similar tokens for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False # Define prediction function for the chat interface def predict(message, history): # Format the input according to your specified structure formatted_input = f"### user : {message} ### input: ### answer:" # Tokenize the input model_inputs = tokenizer([formatted_input], return_tensors="pt").to("cuda") # Set up the streamer for partial message output streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) # Generate settings generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024 ) # Run generation in a separate thread t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Stream partial messages as they are generated partial_message = "" for new_token in streamer: if new_token != '<': # Skip specific tokens if necessary partial_message += new_token yield partial_message # Create the chat interface using Gradio gr.ChatInterface(fn=predict, title="Monlam LLM", description="").launch(share=True)