import os from threading import Thread, Event from typing import Iterator import gradio as gr import torch from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer DESCRIPTION = """\ # Monlam LLM v2.0.1 """ path="TenzinGayche/tpo_v1.0.0_ep2_dpo_ft" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # Load the model and tokenizer tokenizer = GemmaTokenizerFast.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16).to("cuda") model.config.sliding_window = 4096 model.eval() # Create a shared stop event stop_event = Event() def generate( message: str, chat_history: list[dict], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, do_sample: bool= False ) -> Iterator[str]: # Clear the stop event before starting a new generation stop_event.clear() # Append the user's message to the conversation history conversation = chat_history.copy() if not conversation: conversation.extend([ { "role": "user", "content": "ཁྱེད་རང་སྨོན་ལམ་མི་བཟོས་རིག་ནུས་ཤིག་ཡིན་པ་དང་ཁྱེད་རང་མི་བཟོས་རིག་ནུས་(AI)ཤིག་ཡིན།" }, { "role": "assistant", "content": "ལགས་སོ། ང་ཡིས་ཁྱེད་ཀྱི་བཀའ་བཞིན་སྒྲུབ་ཆོག" } ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) # Create a streamer to get the generated response streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, ) # Run generation in a background thread t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: if stop_event.is_set(): break # Stop if the stop button is pressed outputs.append(text) yield "".join(outputs) # After generation, append the assistant's response to the chat history assistant_response = "".join(outputs) chat_history.append({"role": "assistant", "content": assistant_response}) # Define a function to stop the generation def stop_generation(): stop_event.set() # Create the chat interface with additional inputs and the stop button with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) # Create the chat interface chat_interface = gr.ChatInterface( fn=generate, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], cache_examples=False, type="messages", ) if __name__ == "__main__": demo.queue(max_size=20).launch(share=True)