Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread, Event | |
from typing import Iterator | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer | |
DESCRIPTION = """\ | |
# Monlam LLM v2.0.1 -Translation | |
## This version first generates detailed reasoning (thoughts) and then, after the marker #Final Translation, the translation is produced. | |
""" | |
# Constants | |
path = "TenzinGayche/tpo_v1.0.0_dpo_2_3ep_ft" | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
# Load the model and tokenizer | |
tokenizer = GemmaTokenizerFast.from_pretrained(path) | |
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16).to("cuda") | |
model.config.sliding_window = 4096 | |
model.eval() | |
model.config.use_cache = True | |
# Shared stop event | |
stop_event = Event() | |
# Generate function | |
def generate(message: str, | |
show_thoughts: bool, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
do_sample: bool = False, | |
) -> Iterator[str]: | |
stop_event.clear() | |
message=message.replace('\n',' ') | |
# Prepare input for the model | |
conversation = [ | |
{"role": "user", "content": f"Please translate the following into English: {message} Translation:"} | |
] | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Input trimmed as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
# Use a streamer to get generated text | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
# Generate in a separate thread | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
in_translation = False | |
for text in streamer: | |
if stop_event.is_set(): | |
break | |
# Process the generated text | |
if "#Final Translation:" in text and not in_translation: | |
in_translation = True | |
if not show_thoughts: | |
text = text.split("#Final Translation:", 1)[1].strip() # Skip reasoning if "View Thoughts" is disabled | |
if in_translation: | |
outputs.append(text) | |
yield "".join(outputs) | |
elif show_thoughts: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Append assistant's response | |
chat_history = "".join(outputs) | |
# Stop generation function | |
def stop_generation(): | |
stop_event.set() | |
# Create the Gradio interface | |
with gr.Blocks(css="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
input_text = gr.Textbox(label="Enter Tibetan text", placeholder="Type Tibetan text here...") | |
show_thoughts = gr.Checkbox(label="View Detailed Thoughts", value=True) | |
submit_button = gr.Button("Translate") | |
stop_button = gr.Button("Stop") | |
with gr.Row(): | |
output_area = gr.Textbox( | |
label="Output (Thoughts and Translation)", | |
lines=20, | |
interactive=False, | |
) | |
# Connect buttons to functions | |
submit_button.click( | |
fn=generate, | |
inputs=[input_text, show_thoughts], | |
outputs=output_area, | |
queue=True, # Enable streaming | |
) | |
stop_button.click(stop_generation) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |