Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread, Event | |
from typing import Iterator | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer | |
DESCRIPTION = """\ | |
# Monlam LLM v2.0.1 | |
""" | |
path="TenzinGayche/tpo_v1.0.0_ep1_dpo_ft" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
# Load the model and tokenizer | |
tokenizer = GemmaTokenizerFast.from_pretrained(path) | |
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16).to("cuda") | |
model.config.sliding_window = 4096 | |
model.eval() | |
# Create a shared stop event | |
stop_event = Event() | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
max_new_tokens: int = 2048, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
do_sample: bool= False | |
) -> Iterator[str]: | |
# Clear the stop event before starting a new generation | |
stop_event.clear() | |
# Append the user's message to the conversation history | |
conversation = chat_history.copy() | |
if not conversation: | |
conversation.extend([ | |
{ | |
"role": "user", | |
"content": "ཁྱེད་རང་སྨོན་ལམ་མི་བཟོས་རིག་ནུས་ཤིག་ཡིན་པ་དང་ཁྱེད་རང་མི་བཟོས་རིག་ནུས་(AI)ཤིག་ཡིན།" | |
}, | |
{ | |
"role": "assistant", | |
"content": "ལགས་སོ། ང་ཡིས་ཁྱེད་ཀྱི་བཀའ་བཞིན་སྒྲུབ་ཆོག" | |
} | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
# Create a streamer to get the generated response | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
# Run generation in a background thread | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
if stop_event.is_set(): | |
break # Stop if the stop button is pressed | |
outputs.append(text) | |
yield "".join(outputs) | |
# After generation, append the assistant's response to the chat history | |
assistant_response = "".join(outputs) | |
chat_history.append({"role": "assistant", "content": assistant_response}) | |
# Define a function to stop the generation | |
def stop_generation(): | |
stop_event.set() | |
# Create the chat interface with additional inputs and the stop button | |
with gr.Blocks(css="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
# Create the chat interface | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
cache_examples=False, | |
type="messages", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) | |