File size: 6,226 Bytes
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
5a7796a
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import boto3
import json
import time
import zipfile
from io import BytesIO
import uuid
import pprint
import logging
print(boto3.__version__)
from PIL import Image 
import os
import base64
import re
import requests 
#import utilities.re_ranker as re_ranker
import utilities.invoke_models as invoke_models
import streamlit as st
import time as t
import botocore.exceptions

if "inputs_" not in st.session_state:
    st.session_state.inputs_ = {}

parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
region = 'us-east-1'
print(region)
account_id = '445083327804'
# setting logger
logging.basicConfig(format='[%(asctime)s] p%(process)s {%(filename)s:%(lineno)d} %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
# getting boto3 clients for required AWS services

#bedrock_agent_client = boto3.client('bedrock-agent',region_name=region)
bedrock_agent_runtime_client = boto3.client(
    'bedrock-agent-runtime',
    aws_access_key_id=st.secrets['user_access_key'],
    aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1'
)
enable_trace:bool = True
end_session:bool = False

def delete_memory():
    response = bedrock_agent_runtime_client.delete_agent_memory(
    agentAliasId='TSTALIASID',
    agentId='B4Z7BTURC4'
    )
    
def query_(inputs):
    ## create a random id for session initiator id
    
    
    # invoke the agent API
    agentResponse = bedrock_agent_runtime_client.invoke_agent(
        inputText=inputs['shopping_query'],
        agentId='B4Z7BTURC4',
        agentAliasId='TSTALIASID', 
        sessionId=st.session_state.session_id_,
        enableTrace=enable_trace, 
        endSession= end_session
    )

    logger.info(pprint.pprint(agentResponse))
    print("***agent*****response*********")
    print(agentResponse)
    event_stream = agentResponse['completion']
    total_context = []
    last_tool = ""
    last_tool_name = ""
    agent_answer = ""
    try:
        for event in event_stream:
            print("***event*********")
            print(event)
            # if 'chunk' in event:
            #     data = event['chunk']['bytes']
            #     print("***chunk*********")
            #     print(data)
            #     logger.info(f"Final answer ->\n{data.decode('utf8')}")
            #     agent_answer_ = data.decode('utf8')
            #     print(agent_answer_)
            if 'trace' in event: 
                print("trace*****total*********")
                print(event['trace'])
                if('orchestrationTrace' not in event['trace']['trace']):
                    continue
                orchestration_trace = event['trace']['trace']['orchestrationTrace']
                total_context_item = {}
                if('modelInvocationOutput' in orchestration_trace and '<tool_name>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
                    total_context_item['tool'] = orchestration_trace['modelInvocationOutput']['rawResponse']
                if('rationale' in orchestration_trace):
                    total_context_item['rationale'] = orchestration_trace['rationale']['text']
                if('invocationInput' in orchestration_trace):
                    total_context_item['invocationInput'] = orchestration_trace['invocationInput']['actionGroupInvocationInput']
                    last_tool_name = total_context_item['invocationInput']['function']
                if('observation'  in orchestration_trace):
                    print("trace****observation******")
                    total_context_item['observation'] = event['trace']['trace']['orchestrationTrace']['observation']
                    tool_output_last_obs = event['trace']['trace']['orchestrationTrace']['observation']
                    print(tool_output_last_obs)
                    if(tool_output_last_obs['type'] == 'ACTION_GROUP'):
                        last_tool = tool_output_last_obs['actionGroupInvocationOutput']['text']
                    if(tool_output_last_obs['type'] == 'FINISH'):   
                        agent_answer = tool_output_last_obs['finalResponse']['text']
                if('modelInvocationOutput' in orchestration_trace and '<thinking>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
                    total_context_item['thinking'] = orchestration_trace['modelInvocationOutput']['rawResponse']
                if(total_context_item!={}):
                    total_context.append(total_context_item)
        print("total_context------")
        print(total_context)    
    except botocore.exceptions.EventStreamError as error:
        raise error
        # t.sleep(2)
        # query_(st.session_state.inputs_)     
                
            # if 'chunk' in event:
            #     data = event['chunk']['bytes']
            #     final_ans = data.decode('utf8')
            #     print(f"Final answer ->\n{final_ans}")
            #     logger.info(f"Final answer ->\n{final_ans}")
            #     agent_answer = final_ans
            #     end_event_received = True
            #     # End event indicates that the request finished successfully
            # elif 'trace' in event:
            #     logger.info(json.dumps(event['trace'], indent=2))
            # else:
            #     raise Exception("unexpected event.", event)
    # except Exception as e:
    #     raise Exception("unexpected event.", e)
    return {'text':agent_answer,'source':total_context,'last_tool':{'name':last_tool_name,'response':last_tool}}

        ####### Re-Rank ########
    
    #print("re-rank")
    
    # if(st.session_state.input_is_rerank == True and len(total_context)):
    #     ques = [{"question":question}]
    #     ans = [{"answer":total_context}]
        
    #     total_context = re_ranker.re_rank('rag','Cross Encoder',"",ques, ans)

    # llm_prompt = prompt_template.format(context=total_context[0],question=question)
    # output = invoke_models.invoke_llm_model( "\n\nHuman: {input}\n\nAssistant:".format(input=llm_prompt) ,False)
    # #print(output)
    # if(len(images_2)==0):
    #     images_2 = images
    # return {'text':output,'source':total_context,'image':images_2,'table':df}