Spaces:
Running
on
T4
Running
on
T4
File size: 9,004 Bytes
55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 2034f95 55b3b62 2034f95 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 cccd8e6 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 4ca2226 55b3b62 cccd8e6 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 ad41a02 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 cccd8e6 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 cccd8e6 55b3b62 4ca2226 55b3b62 63c9f19 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 2e2dda5 55b3b62 cccd8e6 55b3b62 cccd8e6 55b3b62 cccd8e6 2e2dda5 55b3b62 ad41a02 55b3b62 cccd8e6 55b3b62 cccd8e6 55b3b62 cccd8e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Streamlit app: Chat with PDFs using OpenSearch, RAG, and ColPali
import streamlit as st
import uuid
import os
import sys
import warnings
import boto3
import json
import random
import string
import pandas as pd
from PIL import Image
from requests.auth import HTTPBasicAuth
# Suppress Streamlit deprecation warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Add necessary module paths
base_path = "/".join(os.path.realpath(__file__).split("/")[:-2])
sys.path.insert(1, f"{base_path}/semantic_search")
sys.path.insert(1, f"{base_path}/RAG")
sys.path.insert(1, f"{base_path}/utilities")
# Local modules
import rag_DocumentLoader
import rag_DocumentSearcher
import colpali
# AWS & OpenSearch setup
region = 'us-east-1'
s3_bucket_ = "pdf-repo-uploads"
bedrock_runtime_client = boto3.client('bedrock-runtime', region_name=region)
polly_client = boto3.client(
'polly',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'],
region_name=region
)
credentials = boto3.Session().get_credentials()
awsauth = HTTPBasicAuth('master', st.secrets['ml_search_demo_api_access'])
# App configuration
st.set_page_config(layout="wide", page_icon="images/opensearch_mark_default.png")
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[:-1])
USER_ICON = "images/user.png"
AI_ICON = "images/opensearch-twitter-card.png"
REGENERATE_ICON = "images/regenerate.png"
# Session state setup
if 'user_id' not in st.session_state:
st.session_state['user_id'] = str(uuid.uuid4())
st.session_state.setdefault('session_id', "")
st.session_state.setdefault('chats', [{'id': 0, 'question': '', 'answer': ''}])
st.session_state.setdefault('questions_', [])
st.session_state.setdefault('answers_', [])
st.session_state.setdefault('show_columns', False)
st.session_state.setdefault('input_index', "hpijan2024hometrack")
st.session_state.setdefault('input_is_rerank', True)
st.session_state.setdefault('input_is_colpali', False)
st.session_state.setdefault('input_copali_rerank', False)
st.session_state.setdefault('input_table_with_sql', False)
st.session_state.setdefault('input_query', "which city has the highest average housing price in UK ?")
st.session_state.setdefault('input_rag_searchType', ["Vector Search"])
# Custom styling
st.markdown("""
<style>
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock],
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock] {
gap: 0rem;
}
</style>
""", unsafe_allow_html=True)
# Top bar with app logo and clear button
def write_top_bar():
col1, col2 = st.columns([77, 23])
with col1:
st.header("Chat with your data", divider='rainbow')
with col2:
clear = st.button("Clear")
st.write("") # spacing
return clear
# Reset inputs when Clear is clicked
if write_top_bar():
st.session_state.questions_ = []
st.session_state.answers_ = []
st.session_state.input_query = ""
# Handle user query submission
def handle_input():
if st.session_state.input_query == '':
return
inputs = {key.removeprefix('input_'): st.session_state[key] for key in st.session_state if key.startswith('input_')}
st.session_state.inputs_ = inputs
st.session_state.questions_.append({
'question': inputs["query"],
'id': len(st.session_state.questions_)
})
if st.session_state.input_is_colpali:
out_ = colpali.colpali_search_rerank(st.session_state.input_query)
else:
out_ = rag_DocumentSearcher.query_(
awsauth,
inputs,
st.session_state['session_id'],
st.session_state.input_rag_searchType
)
st.session_state.answers_.append({
'answer': out_['text'],
'source': out_['source'],
'id': len(st.session_state.questions_),
'image': out_['image'],
'table': out_['table']
})
st.session_state.input_query = ""
# Display user message block
def write_user_message(msg):
col1, col2 = st.columns([3, 97])
with col1:
st.image(USER_ICON, use_container_width=True)
with col2:
st.markdown(
f"<div style='color:#e28743;font-size:18px;padding:3px 7px;border-radius:10px;font-style:italic;'>{msg['question']}</div>",
unsafe_allow_html=True
)
# Render assistant answer block with optional images and tables
def write_chat_message(response, question, index):
col1, col2, col3 = st.columns([4, 74, 22])
with col1:
st.image(AI_ICON, use_container_width=True)
with col2:
answer_text = response['answer']
st.write(answer_text)
polly_response = polly_client.synthesize_speech(
VoiceId='Joanna', OutputFormat='ogg_vorbis', Text=answer_text, Engine='neural')
st.audio(polly_response['AudioStream'].read(), format="audio/ogg")
if st.session_state.input_is_colpali:
if st.button("Show similarity map", key=f"simmap_{index}"):
st.session_state.show_columns = True
st.session_state.maxSimImages = colpali.img_highlight(
st.session_state.top_img,
st.session_state.query_token_vectors,
st.session_state.query_tokens
)
handle_input()
with placeholder.container():
render_all()
with st.expander("Relevant Sources"):
for img in response.get('image', []):
if isinstance(img, dict) and 'file' in img:
st.image(img['file'])
for tbl in response.get('table', []):
try:
df = pd.read_csv(tbl['name'], skipinitialspace=True, on_bad_lines='skip', delimiter='`')
df.fillna(method='pad', inplace=True)
st.table(df)
except Exception as e:
st.warning(f"Failed to load table: {e}")
st.write(response.get("source", ""))
# Render all Q&A pairs
def render_all():
for index, (q, a) in enumerate(zip(st.session_state.questions_, st.session_state.answers_), start=1):
write_user_message(q)
write_chat_message(a, q, index)
# Placeholder for dynamic rendering
placeholder = st.empty()
with placeholder.container():
render_all()
# Input field for user question
col_2, col_3 = st.columns([75, 20])
with col_2:
st.text_input("Ask here", label_visibility="collapsed", key="input_query")
with col_3:
st.button("GO", on_click=handle_input, key="play")
# Sidebar configuration
with st.sidebar:
st.page_link("app.py", label=":orange[Home]", icon="🏠")
st.subheader(":blue[Sample Data]")
coln_1, coln_2 = st.columns([70, 30])
with coln_1:
st.radio("Choose one index", ["UK Housing", "Global Warming stats", "Covid19 impacts on Ireland"], key="input_rad_index")
with coln_2:
st.markdown("<p style='font-size:15px'>Preview file</p>", unsafe_allow_html=True)
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)")
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)")
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)")
st.subheader(":blue[Retriever]")
st.multiselect("Select the Retriever(s)", ["Keyword Search", "Vector Search", "Sparse Search"], default=["Vector Search"], key="input_rag_searchType")
st.checkbox("Re-rank results", key="input_is_rerank", value=True)
st.subheader(":blue[Multi-vector retrieval]")
colpali_search_rerank = st.checkbox('Try Colpali multi-vector retrieval on the [sample dataset](https://huggingface.co/datasets/vespa-engine/gpfg-QA)',
key='input_colpali',
disabled=False,
value=False,
help="Checking this box will use colpali as the embedding model and retrieval is performed using multi-vectors followed by re-ranking using MaxSim")
if colpali_search_rerank:
st.session_state.input_is_colpali = True
else:
st.session_state.input_is_colpali = False
with st.expander("Sample questions for Colpali retriever:"):
st.write("""
1. Proportion of female new hires 2021-2023?
2. First-half 2021 return on unlisted real estate investments?
3. Trend of the fund's expected absolute volatility between January 2014 and January 2016?
4. Fund return percentage in 2017?
5. Annualized gross return of the fund from 1997 to 2008?
""")
|