Spaces:
Running
on
T4
Running
on
T4
File size: 6,225 Bytes
2e2dda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import boto3
import json
import time
import zipfile
from io import BytesIO
import uuid
import pprint
import logging
print(boto3.__version__)
from PIL import Image
import os
import base64
import re
import requests
import utilities.re_ranker as re_ranker
import utilities.invoke_models as invoke_models
import streamlit as st
import time as t
import botocore.exceptions
if "inputs_" not in st.session_state:
st.session_state.inputs_ = {}
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
region = 'us-east-1'
print(region)
account_id = '445083327804'
# setting logger
logging.basicConfig(format='[%(asctime)s] p%(process)s {%(filename)s:%(lineno)d} %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
# getting boto3 clients for required AWS services
#bedrock_agent_client = boto3.client('bedrock-agent',region_name=region)
bedrock_agent_runtime_client = boto3.client(
'bedrock-agent-runtime',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1'
)
enable_trace:bool = True
end_session:bool = False
def delete_memory():
response = bedrock_agent_runtime_client.delete_agent_memory(
agentAliasId='TSTALIASID',
agentId='B4Z7BTURC4'
)
def query_(inputs):
## create a random id for session initiator id
# invoke the agent API
agentResponse = bedrock_agent_runtime_client.invoke_agent(
inputText=inputs['shopping_query'],
agentId='B4Z7BTURC4',
agentAliasId='TSTALIASID',
sessionId=st.session_state.session_id_,
enableTrace=enable_trace,
endSession= end_session
)
logger.info(pprint.pprint(agentResponse))
print("***agent*****response*********")
print(agentResponse)
event_stream = agentResponse['completion']
total_context = []
last_tool = ""
last_tool_name = ""
agent_answer = ""
try:
for event in event_stream:
print("***event*********")
print(event)
# if 'chunk' in event:
# data = event['chunk']['bytes']
# print("***chunk*********")
# print(data)
# logger.info(f"Final answer ->\n{data.decode('utf8')}")
# agent_answer_ = data.decode('utf8')
# print(agent_answer_)
if 'trace' in event:
print("trace*****total*********")
print(event['trace'])
if('orchestrationTrace' not in event['trace']['trace']):
continue
orchestration_trace = event['trace']['trace']['orchestrationTrace']
total_context_item = {}
if('modelInvocationOutput' in orchestration_trace and '<tool_name>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
total_context_item['tool'] = orchestration_trace['modelInvocationOutput']['rawResponse']
if('rationale' in orchestration_trace):
total_context_item['rationale'] = orchestration_trace['rationale']['text']
if('invocationInput' in orchestration_trace):
total_context_item['invocationInput'] = orchestration_trace['invocationInput']['actionGroupInvocationInput']
last_tool_name = total_context_item['invocationInput']['function']
if('observation' in orchestration_trace):
print("trace****observation******")
total_context_item['observation'] = event['trace']['trace']['orchestrationTrace']['observation']
tool_output_last_obs = event['trace']['trace']['orchestrationTrace']['observation']
print(tool_output_last_obs)
if(tool_output_last_obs['type'] == 'ACTION_GROUP'):
last_tool = tool_output_last_obs['actionGroupInvocationOutput']['text']
if(tool_output_last_obs['type'] == 'FINISH'):
agent_answer = tool_output_last_obs['finalResponse']['text']
if('modelInvocationOutput' in orchestration_trace and '<thinking>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
total_context_item['thinking'] = orchestration_trace['modelInvocationOutput']['rawResponse']
if(total_context_item!={}):
total_context.append(total_context_item)
print("total_context------")
print(total_context)
except botocore.exceptions.EventStreamError as error:
raise error
# t.sleep(2)
# query_(st.session_state.inputs_)
# if 'chunk' in event:
# data = event['chunk']['bytes']
# final_ans = data.decode('utf8')
# print(f"Final answer ->\n{final_ans}")
# logger.info(f"Final answer ->\n{final_ans}")
# agent_answer = final_ans
# end_event_received = True
# # End event indicates that the request finished successfully
# elif 'trace' in event:
# logger.info(json.dumps(event['trace'], indent=2))
# else:
# raise Exception("unexpected event.", event)
# except Exception as e:
# raise Exception("unexpected event.", e)
return {'text':agent_answer,'source':total_context,'last_tool':{'name':last_tool_name,'response':last_tool}}
####### Re-Rank ########
#print("re-rank")
# if(st.session_state.input_is_rerank == True and len(total_context)):
# ques = [{"question":question}]
# ans = [{"answer":total_context}]
# total_context = re_ranker.re_rank('rag','Cross Encoder',"",ques, ans)
# llm_prompt = prompt_template.format(context=total_context[0],question=question)
# output = invoke_models.invoke_llm_model( "\n\nHuman: {input}\n\nAssistant:".format(input=llm_prompt) ,False)
# #print(output)
# if(len(images_2)==0):
# images_2 = images
# return {'text':output,'source':total_context,'image':images_2,'table':df}
|