File size: 3,828 Bytes
2e2dda5
 
 
 
 
 
 
 
c2c6e99
 
 
2e2dda5
 
c2c6e99
2e2dda5
 
c2c6e99
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c6e99
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c6e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import boto3
from botocore.exceptions import ClientError
import pprint
import time
import streamlit as st
from sentence_transformers import CrossEncoder

model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", max_length=512)
####### Add this Kendra Rescore ranking
#kendra_ranking = boto3.client("kendra-ranking",region_name = 'us-east-1')
#print("Create a rescore execution plan.")

# Provide a name for the rescore execution plan
#name = "MyRescoreExecutionPlan"
# Set your required additional capacity units
# Don't set capacity units if you don't require more than 1 unit given by default
#capacity_units = 2

# try:
#     rescore_execution_plan_response = kendra_ranking.create_rescore_execution_plan(
#         Name = name,
#         CapacityUnits = {"RescoreCapacityUnits":capacity_units}
#     )

#     pprint.pprint(rescore_execution_plan_response)

#     rescore_execution_plan_id = rescore_execution_plan_response["Id"]

#     print("Wait for Amazon Kendra to create the rescore execution plan.")

#     while True:
#         # Get the details of the rescore execution plan, such as the status
#         rescore_execution_plan_description = kendra_ranking.describe_rescore_execution_plan(
#             Id = rescore_execution_plan_id
#         )
#         # When status is not CREATING quit.
#         status = rescore_execution_plan_description["Status"]
#         print(" Creating rescore execution plan. Status: "+status)
#         time.sleep(60)
#         if status != "CREATING":
#             break

# except ClientError as e:
#         print("%s" % e)

# print("Program ends.")
#########################


def re_rank(self_, rerank_type, search_type, question, answers):
    
    print("start")
    print()
    
        
    ans = []
    ids = []
    ques_ans = []
    query = question[0]['question']
    for i in answers[0]['answer']:
        if(self_ == "search"):
            
            ans.append({
                    "Id": i['id'],
                    "Body": i["desc"],
                    "OriginalScore": i['score'],
                    "Title":i["desc"]
                    })
            ids.append(i['id'])
            ques_ans.append((query,i["desc"]))
        
        else:
            ans.append({'text':i})
            
            ques_ans.append((query,i))
        
            

    re_ranked = [{}]
    ####### Add this Kendra Rescore ranking
    # if(rerank_type == 'Kendra Rescore'):
    #     rescore_response = kendra_ranking.rescore(
    #         RescoreExecutionPlanId = 'b2a4d4f3-98ff-4e17-8b69-4c61ed7d91eb',
    #         SearchQuery = query,
    #         Documents = ans
    #     )
    #     re_ranked[0]['answer']=[]
    #     for result in rescore_response["ResultItems"]:

    #         pos_ = ids.index(result['DocumentId'])

    #         re_ranked[0]['answer'].append(answers[0]['answer'][pos_])
    #     re_ranked[0]['search_type']=search_type,
    #     re_ranked[0]['id'] = len(question)
    #     return re_ranked
        
    if(rerank_type == 'Cross Encoder'):

        scores = model.predict(
                    ques_ans
                        )
        
        index__ = 0
        for i in ans:
            i['new_score'] = scores[index__]
            index__ = index__+1

        ans_sorted = sorted(ans, key=lambda d: d['new_score'],reverse=True) 
        
        
        def retreive_only_text(item):
            return item['text']
            
        if(self_ == 'rag'):
            return list(map(retreive_only_text, ans_sorted)) 

       
        re_ranked[0]['answer']=[]
        for j in ans_sorted:
            pos_ = ids.index(j['Id'])
            re_ranked[0]['answer'].append(answers[0]['answer'][pos_])
        re_ranked[0]['search_type']= search_type,
        re_ranked[0]['id'] = len(question)
        return re_ranked