File size: 10,705 Bytes
991493a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc05755
 
 
 
 
991493a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dac1d4e
 
991493a
 
dac1d4e
991493a
 
 
 
 
 
 
 
 
 
 
 
 
485568d
 
991493a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485568d
 
 
991493a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77dc87
991493a
 
 
 
 
 
 
a45c09b
991493a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc05755
 
 
 
 
 
991493a
dc05755
 
991493a
dc05755
c77dc87
dc05755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
991493a
dc05755
 
991493a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

import json
import random
import pprint
import os
from io import BytesIO
from pathlib import Path
from typing import Optional, cast
import numpy as np
#from datasets import load_dataset
import json
import boto3
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
from requests.auth import HTTPBasicAuth
from requests_aws4auth import AWS4Auth
import matplotlib.pyplot as plt
import requests
import boto3
import streamlit as st
from IPython.display import display, Markdown
import base64
# from colpali_engine.interpretability import (
#     get_similarity_maps_from_embeddings,
#     plot_all_similarity_maps,
#     plot_similarity_map,
# )
import torch
# from colpali_engine.models import ColPali, ColPaliProcessor
# from colpali_engine.utils.torch_utils import get_torch_device
from PIL import Image
import utilities.invoke_models as invoke_models

model_name = (
    "vidore/colpali-v1.3"
)
# colpali_model = ColPali.from_pretrained(
#     model_name,
#     torch_dtype=torch.bfloat16,
#     device_map="cuda:0",  # Use "cuda:0" for GPU, "cpu" for CPU, or "mps" for Apple Silicon
# ).eval()

# colpali_processor = ColPaliProcessor.from_pretrained(
#     model_name
# )

awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
headers = {"Content-Type": "application/json"}
aos_client = OpenSearch(
    hosts = [{'host': 'search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com', 'port': 443}],
    http_auth = awsauth,
    use_ssl = True,
    verify_certs = True,
    connection_class = RequestsHttpConnection,
    pool_maxsize = 20
)
region_endpoint = "us-east-1"


# Your SageMaker endpoint name
endpoint_name = "colpali-endpoint"


# Create a SageMaker runtime client
runtime = boto3.client("sagemaker-runtime",aws_access_key_id=st.secrets['user_access_key'],
    aws_secret_access_key=st.secrets['user_secret_key'], region_name=region_endpoint)

# Prepare your payload (e.g., text-only input)



def call_nova(
    model,
    messages,
    system_message="",
    streaming=False,
    max_tokens=512,
    temp=0.0001,
    top_p=0.99,
    top_k=20,
    tools=None,
    verbose=False,
):
    client = boto3.client('bedrock-runtime',
    aws_access_key_id=st.secrets['user_access_key'],
    aws_secret_access_key=st.secrets['user_secret_key'], region_name = region_endpoint)
    system_list = [{"text": system_message}]
    inf_params = {
        "max_new_tokens": max_tokens,
        "top_p": top_p,
        "top_k": top_k,
        "temperature": temp,
    }
    request_body = {
        "messages": messages,
        "system": system_list,
        "inferenceConfig": inf_params,
    }
    if tools is not None:
        tool_config = []
        for tool in tools:
            tool_config.append({"toolSpec": tool})
        request_body["toolConfig"] = {"tools": tool_config}
    if verbose:
        print("Request Body", request_body)
    if not streaming:
        response = client.invoke_model(modelId=model, body=json.dumps(request_body))
        model_response = json.loads(response["body"].read())
        return model_response, model_response["output"]["message"]["content"][0]["text"]
    else:
        response = client.invoke_model_with_response_stream(
            modelId=model, body=json.dumps(request_body)
        )
        return response["body"]
def get_base64_encoded_value(media_path):
    with open(media_path, "rb") as media_file:
        binary_data = media_file.read()
        base_64_encoded_data = base64.b64encode(binary_data)
        base64_string = base_64_encoded_data.decode("utf-8")
        return base64_string

def generate_ans(top_result,query):
    print(query)
    system_message = "given an image of a PDF page, answer the question. Be accurate to the question. If you don't find the answer in the page, please say, I don't know"
    messages = [
    {
        "role": "user",  
        "content": [
            {
                "image": {
                    "format": "jpeg",
                    "source": {
                        "bytes": get_base64_encoded_value(
                            top_result
                        )
                    },
                }
            },
            {
                "text": query#"what is the proportion of female new hires 2021-2023?"
            },
        ],
    }
]
    model_response, content_text = call_nova(
    "amazon.nova-pro-v1:0", messages, system_message=system_message, max_tokens=300
    )
    print(content_text)
    return content_text

    
def colpali_search_rerank(query):
    # Convert to JSON string
    payload = {
    "queries": [query]
    }
    body = json.dumps(payload)

    # Call the endpoint
    response = runtime.invoke_endpoint(
        EndpointName=endpoint_name,
        ContentType="application/json",
        Body=body
    )

    # Read and print the response
    result = json.loads(response["Body"].read().decode())
    #print(len(result['query_embeddings'][0]))
    
    final_docs_sorted_20 = []
    for i in result['query_embeddings']:
        batch_embeddings = i
        a = np.array(batch_embeddings)
        vec = a.mean(axis=0)
        #print(vec)
        hits = []
        #for v in batch_embeddings:
        query_ = {
            "size": 200,
            "query": {
                "nested": {
                "path": "page_sub_vectors",
                "query": {
                    "knn": {
                    "page_sub_vectors.page_sub_vector": {
                        "vector": vec.tolist(),
                        "k": 200
                    }
                    }
                }
                    }
                }
                }
        response = aos_client.search(
            body = query_,
            index = 'colpali-vs'
        )
        #print(response)
        query_token_vectors = batch_embeddings
        final_docs = []
        hits += response['hits']['hits']
        #print(len(hits))
        for ind,j in enumerate(hits):
            max_score_dict_list = []
            doc={"id":j["_id"],"score":j["_score"],"image":j["_source"]["image"]}
            with_s = j['_source']['page_sub_vectors']
            add_score = 0

            for index,i in enumerate(query_token_vectors):
                query_token_vector = np.array(i)
                scores = []
                for m in with_s:
                    doc_token_vector = np.array(m['page_sub_vector'])
                    score = np.dot(query_token_vector,doc_token_vector)
                    scores.append(score)
                    
                scores.sort(reverse=True)
                max_score = scores[0]
                add_score+=max_score
            doc["total_score"] = add_score
            final_docs.append(doc)
        final_docs_sorted = sorted(final_docs, key=lambda d: d['total_score'], reverse=True)
        final_docs_sorted_20.append(final_docs_sorted[:20])
        img = "/home/user/app/vs/"+final_docs_sorted_20[0][0]['image']
        ans = generate_ans(img,query)
        images_highlighted = [{'file':img}]
        st.session_state.top_img = img
        st.session_state.query_token_vectors = query_token_vectors
        st.session_state.query_tokens = result['query_tokens']
        return {'text':ans,'source':img,'image':images_highlighted,'table':[]}#[{'file':img}]
    


def img_highlight(img,batch_queries,query_tokens):
    # Reference from : https://github.com/tonywu71/colpali-cookbooks/blob/main/examples/gen_colpali_similarity_maps.ipynb
    with open(img, "rb") as f:
        img_b64 = base64.b64encode(f.read()).decode("utf-8")

    # Construct payload with only the image
    payload = {
        "images": [img_b64]
    }

# Send to endpoint
    response = runtime.invoke_endpoint(
        EndpointName=endpoint_name,  # your endpoint name
        ContentType="application/json",
        Body=json.dumps(payload)
    )

    # Read response
    img_colpali_res = (json.loads(response["Body"].read().decode()))
    
    # Convert outputs to tensors
    image_embeddings = torch.tensor(img_colpali_res["image_embeddings"][0])      # shape: [B, T, D] or [T, D]
    query_embeddings = torch.tensor(batch_queries)      # shape: [B, D]
    # Ensure you're accessing the full 1D mask vector, not a single value
    image_mask_list = img_colpali_res["image_mask"]

    if isinstance(image_mask_list[0], list):
        # Correct: list of lists
        image_mask = torch.tensor(image_mask_list[0]).bool()
    else:
        # Edge case: already flattened
        image_mask = torch.tensor(image_mask_list).bool()
  
    print("Valid patch count:", image_mask.sum().item())        # shape: [B, T] or [T]
    
        # Ensure 2D query_embeddings
    if query_embeddings.dim() == 2:
        query_embeddings = query_embeddings.unsqueeze(0) 

    # Ensure image_embeddings and image_mask are batched
    if image_embeddings.dim() == 2:
        image_embeddings = image_embeddings.unsqueeze(0)  # [1, T, D]

    if image_mask.dim() == 1:
        image_mask = image_mask.unsqueeze(0) 
        
    print("query_embeddings shape:", query_embeddings.shape)
    print("image_embeddings shape:", image_embeddings.shape)
    print("image_mask shape:", image_mask.shape)
    
    # Get the number of image patches
    image = Image.open(img)
    n_patches = (img_colpali_res["patch_shape"]['height'],img_colpali_res["patch_shape"]['width'])
    print(f"Number of image patches: {n_patches}")

    # # Generate the similarity maps
    # batched_similarity_maps = get_similarity_maps_from_embeddings(
    #     image_embeddings=image_embeddings,
    #     query_embeddings=query_embeddings,
    #     n_patches=n_patches,
    #     image_mask = image_mask
    # )

    # # # Get the similarity map for our (only) input image
    # similarity_maps = batched_similarity_maps[0]  # (query_length, n_patches_x, n_patches_y)

    # query_tokens_from_model = query_tokens[0]['tokens']
    
    # plots = plot_all_similarity_maps(
    # image=image,
    # query_tokens=query_tokens_from_model,
    # similarity_maps=similarity_maps,
    # figsize=(8, 8),
    # show_colorbar=False,
    # add_title=True,
    # )
    # map_images = []
    # for idx, (fig, ax) in enumerate(plots):
    #     if(idx<3):
    #         continue
    #     savepath = "/home/user/app/similarity_maps/similarity_map_"+(img.split("/"))[-1]+"_token_"+str(idx)+"_"+query_tokens_from_model[idx]+".png"
    #     fig.savefig(savepath, bbox_inches="tight")
    #     map_images.append({'file':savepath})
    #     print(f"Similarity map for token `{query_tokens_from_model[idx]}` saved at `{savepath}`")
        
    # plt.close("all")   
    return ""#map_images