File size: 4,130 Bytes
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import boto3
from botocore.exceptions import ClientError
import pprint
import time
import streamlit as st
from sentence_transformers import CrossEncoder

model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", max_length=512)
kendra_ranking = boto3.client("kendra-ranking",region_name = 'us-east-1')


print("Create a rescore execution plan.")

# Provide a name for the rescore execution plan
name = "MyRescoreExecutionPlan"
# Set your required additional capacity units
# Don't set capacity units if you don't require more than 1 unit given by default
capacity_units = 2

# try:
#     rescore_execution_plan_response = kendra_ranking.create_rescore_execution_plan(
#         Name = name,
#         CapacityUnits = {"RescoreCapacityUnits":capacity_units}
#     )

#     pprint.pprint(rescore_execution_plan_response)

#     rescore_execution_plan_id = rescore_execution_plan_response["Id"]

#     print("Wait for Amazon Kendra to create the rescore execution plan.")

#     while True:
#         # Get the details of the rescore execution plan, such as the status
#         rescore_execution_plan_description = kendra_ranking.describe_rescore_execution_plan(
#             Id = rescore_execution_plan_id
#         )
#         # When status is not CREATING quit.
#         status = rescore_execution_plan_description["Status"]
#         print(" Creating rescore execution plan. Status: "+status)
#         time.sleep(60)
#         if status != "CREATING":
#             break

# except ClientError as e:
#         print("%s" % e)

# print("Program ends.")



def re_rank(self_, rerank_type, search_type, question, answers):
    
    print("start")
    print()
    
        
    ans = []
    ids = []
    ques_ans = []
    query = question[0]['question']
    for i in answers[0]['answer']:
        if(self_ == "search"):
            
            ans.append({
                    "Id": i['id'],
                    "Body": i["desc"],
                    "OriginalScore": i['score'],
                    "Title":i["desc"]
                    })
            ids.append(i['id'])
            ques_ans.append((query,i["desc"]))
        
        else:
            ans.append({'text':i})
            
            ques_ans.append((query,i))
        
            

    re_ranked = [{}]

  

    

    if(rerank_type == 'Kendra Rescore'):


        

        rescore_response = kendra_ranking.rescore(
            RescoreExecutionPlanId = 'b2a4d4f3-98ff-4e17-8b69-4c61ed7d91eb',
            SearchQuery = query,
            Documents = ans
        )
    
            
        #[{'DocumentId': 'DocId1', 'Score': 2.0}, {'DocumentId': 'DocId2', 'Score': 1.0}]   
            
        
        re_ranked[0]['answer']=[]
        for result in rescore_response["ResultItems"]:

            pos_ = ids.index(result['DocumentId'])

            re_ranked[0]['answer'].append(answers[0]['answer'][pos_])
        re_ranked[0]['search_type']=search_type,
        re_ranked[0]['id'] = len(question)

        #st.session_state.answers_none_rank = st.session_state.answers
        return re_ranked
        

    # if(rerank_type == 'None'):
        
    #     st.session_state.answers = st.session_state.answers_none_rank 
        

    if(rerank_type == 'Cross Encoder'):

        scores = model.predict(
                    ques_ans
                        )
        
        print("scores")
        print(scores)
        index__ = 0
        for i in ans:
            i['new_score'] = scores[index__]
            index__ = index__+1

        ans_sorted = sorted(ans, key=lambda d: d['new_score'],reverse=True) 
        
        
        def retreive_only_text(item):
            return item['text']
            
        if(self_ == 'rag'):
            return list(map(retreive_only_text, ans_sorted)) 

       
        re_ranked[0]['answer']=[]
        for j in ans_sorted:
            pos_ = ids.index(j['Id'])
            re_ranked[0]['answer'].append(answers[0]['answer'][pos_])
        re_ranked[0]['search_type']= search_type,
        re_ranked[0]['id'] = len(question)
        return re_ranked




    #return st.session_state.answers