Spaces:
Running
on
T4
Running
on
T4
File size: 23,579 Bytes
2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 bc2fefa b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f ef7792d 2034f95 b23a15f 2e2dda5 b23a15f ad75ca5 b23a15f bf01b09 b23a15f bf01b09 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 72c9086 2e2dda5 b23a15f 2e2dda5 b23a15f 72c9086 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 4ca2226 55b3b62 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f ad41a02 c2c6e99 ad41a02 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f cccd8e6 b23a15f 2e2dda5 72c9086 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 55b3b62 b23a15f 72c9086 4ca2226 b23a15f 63c9f19 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f 2e2dda5 b23a15f c90d53e ef7792d b23a15f ef7792d b23a15f ef7792d b23a15f ef7792d b23a15f ef7792d b23a15f ef7792d c16abb9 ef7792d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import streamlit as st
import uuid
import os
import re
import sys
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities")
import boto3
import requests
from boto3 import Session
import botocore.session
import json
import random
import string
#import rag_DocumentLoader
import rag_DocumentSearcher
import pandas as pd
from PIL import Image
import shutil
import base64
import time
import botocore
from requests_aws4auth import AWS4Auth
import colpali
from requests.auth import HTTPBasicAuth
import warnings
from streamlit import experimental_fragment
warnings.filterwarnings("ignore", category=DeprecationWarning)
st.set_page_config(
#page_title="Semantic Search using OpenSearch",
layout="wide",
page_icon="images/opensearch_mark_default.png"
)
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
USER_ICON = "images/user.png"
AI_ICON = "images/opensearch-twitter-card.png"
REGENERATE_ICON = "images/regenerate.png"
s3_bucket_ = "pdf-repo-uploads"
#"pdf-repo-uploads"
polly_client = boto3.client('polly',aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
# Check if the user ID is already stored in the session state
if 'user_id' in st.session_state:
user_id = st.session_state['user_id']
#print(f"User ID: {user_id}")
# If the user ID is not yet stored in the session state, generate a random UUID
else:
user_id = str(uuid.uuid4())
st.session_state['user_id'] = user_id
if 'session_id' not in st.session_state:
st.session_state['session_id'] = ""
if "chats" not in st.session_state:
st.session_state.chats = [
{
'id': 0,
'question': '',
'answer': ''
}
]
if "questions_" not in st.session_state:
st.session_state.questions_ = []
if "show_columns" not in st.session_state:
st.session_state.show_columns = False
if "answers_" not in st.session_state:
st.session_state.answers_ = []
if "input_index" not in st.session_state:
st.session_state.input_index = "globalwarming"#"hpijan2024hometrack"#"#"hpijan2024hometrack_no_img_no_table"
if "input_is_rerank" not in st.session_state:
st.session_state.input_is_rerank = True
if "input_is_colpali" not in st.session_state:
st.session_state.input_is_colpali = False
if "input_copali_rerank" not in st.session_state:
st.session_state.input_copali_rerank = False
if "input_table_with_sql" not in st.session_state:
st.session_state.input_table_with_sql = False
if "input_query" not in st.session_state:
st.session_state.input_query="What is the projected energy percentage from renewable sources in future?"#"which city has the highest average housing price in UK ?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?"
if "input_rag_searchType" not in st.session_state:
st.session_state.input_rag_searchType = ["Vector Search"]
region = 'us-east-1'
bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region)
output = []
service = 'es'
st.markdown("""
<style>
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{
gap: 0rem;
}
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{
gap: 0rem;
}
</style>
""",unsafe_allow_html=True)
credentials = boto3.Session().get_credentials()
awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
service = 'es'
def write_logo():
col1, col2, col3 = st.columns([5, 1, 5])
with col2:
st.image(AI_ICON, use_column_width='always')
def write_top_bar():
col1, col2 = st.columns([77,23])
with col1:
st.write("")
st.header("Chat with your data",divider='rainbow')
#st.image(AI_ICON, use_column_width='always')
with col2:
st.write("")
st.write("")
clear = st.button("Clear")
st.write("")
st.write("")
return clear
clear = write_top_bar()
if clear:
st.session_state.questions_ = []
st.session_state.answers_ = []
st.session_state.input_query=""
def handle_input():
print("Question: "+st.session_state.input_query)
print("-----------")
print("\n\n")
if(st.session_state.input_query==''):
return ""
inputs = {}
for key in st.session_state:
if key.startswith('input_'):
inputs[key.removeprefix('input_')] = st.session_state[key]
st.session_state.inputs_ = inputs
question_with_id = {
'question': inputs["query"],
'id': len(st.session_state.questions_)
}
st.session_state.questions_.append(question_with_id)
if(st.session_state.input_is_colpali):
out_ = colpali.colpali_search_rerank(st.session_state.input_query)
else:
out_ = rag_DocumentSearcher.query_(awsauth, inputs, st.session_state['session_id'],st.session_state.input_rag_searchType)
st.session_state.answers_.append({
'answer': out_['text'],
'source':out_['source'],
'id': len(st.session_state.questions_),
'image': out_['image'],
'table':out_['table']
})
st.session_state.input_query=""
# search_type = st.selectbox('Select the Search type',
# ('Conversational Search (RAG)',
# 'OpenSearch vector search',
# 'LLM Text Generation'
# ),
# key = 'input_searchType',
# help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)"
# )
# col1, col2, col3, col4 = st.columns(4)
# with col1:
# st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline")
# with col2:
# st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline")
# with col3:
# st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM")
# with col4:
# st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time")
# st.markdown('---')
def write_user_message(md):
col1, col2 = st.columns([3,97])
with col1:
st.image(USER_ICON, use_column_width='always')
with col2:
#st.warning(md['question'])
st.markdown("<div style='color:#e28743';font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;'>"+md['question']+"</div>", unsafe_allow_html = True)
def render_answer(question,answer,index,res_img):
col1, col2, col_3 = st.columns([4,74,22])
with col1:
st.image(AI_ICON, use_column_width='always')
with col2:
ans_ = answer['answer']
st.write(ans_)
# def stream_():
# #use for streaming response on the client side
# for word in ans_.split(" "):
# yield word + " "
# time.sleep(0.04)
# #use for streaming response from Llm directly
# if(isinstance(ans_,botocore.eventstream.EventStream)):
# for event in ans_:
# chunk = event.get('chunk')
# if chunk:
# chunk_obj = json.loads(chunk.get('bytes').decode())
# if('content_block' in chunk_obj or ('delta' in chunk_obj and 'text' in chunk_obj['delta'])):
# key_ = list(chunk_obj.keys())[2]
# text = chunk_obj[key_]['text']
# clear_output(wait=True)
# output.append(text)
# yield text
# time.sleep(0.04)
# if(index == len(st.session_state.questions_)):
# st.write_stream(stream_)
# if(isinstance(st.session_state.answers_[index-1]['answer'],botocore.eventstream.EventStream)):
# st.session_state.answers_[index-1]['answer'] = "".join(output)
# else:
# st.write(ans_)
polly_response = polly_client.synthesize_speech(VoiceId='Joanna',
OutputFormat='ogg_vorbis',
Text = ans_,
Engine = 'neural')
audio_col1, audio_col2 = st.columns([50,50])
with audio_col1:
st.audio(polly_response['AudioStream'].read(), format="audio/ogg")
rdn_key_1 = ''.join([random.choice(string.ascii_letters)
for _ in range(10)])
def show_maxsim():
st.session_state.show_columns = True
st.session_state.maxSimImages = colpali.img_highlight(st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens)
handle_input()
with placeholder.container():
render_all()
if(st.session_state.input_is_colpali):
st.button("Show similarity map",key=rdn_key_1,on_click = show_maxsim)
#st.markdown("<div style='font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;border-radius: 10px;'>"+ans_+"</div>", unsafe_allow_html = True)
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Relevant images from the document :</b></div>", unsafe_allow_html = True)
#st.write("")
colu1,colu2,colu3 = st.columns([4,82,20])
with colu2:
with st.expander("Relevant Sources:"):
with st.container():
if(len(res_img)>0):
#with st.expander("Images:"):
idx = 0
print(res_img)
for i in range(0,len(res_img)):
if(st.session_state.input_is_colpali):
if(st.session_state.show_columns == True):
cols_per_row = 3
st.session_state.image_placeholder=st.empty()
with st.session_state.image_placeholder.container():
row = st.columns(cols_per_row)
for j, item in enumerate(res_img[i:i+cols_per_row]):
with row[j]:
st.image(item['file'])
else:
st.session_state.image_placeholder = st.empty()
with st.session_state.image_placeholder.container():
col3_,col4_,col5_ = st.columns([33,33,33])
with col3_:
st.image(res_img[i]['file'])
else:
if(res_img[i]['file'].lower()!='none' and idx < 1):
col3,col4,col5 = st.columns([33,33,33])
cols = [col3,col4]
img = res_img[i]['file'].split(".")[0]
caption = res_img[i]['caption']
with cols[idx]:
st.image(parent_dirname+"/figures/"+st.session_state.input_index+"/"+img+".jpg")
#st.write(caption)
idx = idx+1
if(st.session_state.show_columns == True):
st.session_state.show_columns = False
#st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Sources from the document:</b></div>", unsafe_allow_html = True)
if(len(answer["table"] )>0):
#with st.expander("Table:"):
df = pd.read_csv(answer["table"][0]['name'],skipinitialspace = True, on_bad_lines='skip',delimiter='`')
df.fillna(method='pad', inplace=True)
st.table(df)
#with st.expander("Raw sources:"):
st.write(answer["source"])
with col_3:
if(index == len(st.session_state.questions_)):
rdn_key = ''.join([random.choice(string.ascii_letters)
for _ in range(10)])
currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index
oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"])
def on_button_click():
if(currentValue!=oldValue or 1==1):
st.session_state.input_query = st.session_state.questions_[-1]["question"]
st.session_state.answers_.pop()
st.session_state.questions_.pop()
handle_input()
with placeholder.container():
render_all()
if("currentValue" in st.session_state):
del st.session_state["currentValue"]
try:
del regenerate
except:
pass
placeholder__ = st.empty()
placeholder__.button("🔄",key=rdn_key,on_click=on_button_click)
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question
def write_chat_message(md, q,index):
if(st.session_state.show_columns):
res_img = st.session_state.maxSimImages
else:
res_img = md['image']
chat = st.container()
with chat:
render_answer(q,md,index,res_img)
def render_all():
index = 0
for (q, a) in zip(st.session_state.questions_, st.session_state.answers_):
index = index +1
write_user_message(q)
write_chat_message(a, q,index)
placeholder = st.empty()
with placeholder.container():
render_all()
st.markdown("")
col_2, col_3 = st.columns([75,20])
with col_2:
#st.markdown("")
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_query")
with col_3:
#hidden = st.button("RUN",disabled=True,key = "hidden")
play = st.button("Go",on_click=handle_input,key = "play")
@experimental_fragment
def sidebar_controls():
with st.sidebar:
st.page_link("app.py", label=":orange[Home]", icon="🏠")
st.subheader(":blue[Sample Data]")
coln_1,coln_2 = st.columns([70,30])
with coln_1:
index_select = st.radio("Choose one index",["Global Warming stats","UK Housing","Covid19 impacts on Ireland"],key="input_rad_index")
with coln_2:
st.markdown("<p style='font-size:15px'>Preview file</p>",unsafe_allow_html=True)
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)")
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)")
st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)")
st.markdown("""
<style>
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{
gap: 0rem;
}
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{
gap: 0rem;
}
</style>
""",unsafe_allow_html=True)
with st.expander("Sample questions:"):
st.markdown("<span style = 'color:#FF9900;'>Global Warming stats</span> - What is the projected energy percentage from renewable sources in future?",unsafe_allow_html=True)
st.markdown("<span style = 'color:#FF9900;'>UK Housing</span> - which city has the highest average housing price in UK ?",unsafe_allow_html=True)
st.markdown("<span style = 'color:#FF9900;'>Covid19 impacts</span> - How many aged above 85 years died due to covid ?",unsafe_allow_html=True)
#st.subheader(":blue[Your multi-modal documents]")
# pdf_doc_ = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
# pdf_docs = [pdf_doc_]
# if st.button("Process"):
# with st.spinner("Processing"):
# if os.path.isdir(parent_dirname+"/pdfs") == False:
# os.mkdir(parent_dirname+"/pdfs")
# for pdf_doc in pdf_docs:
# print(type(pdf_doc))
# pdf_doc_name = (pdf_doc.name).replace(" ","_")
# with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f:
# f.write(pdf_doc.getbuffer())
# request_ = { "bucket": s3_bucket_,"key": pdf_doc_name}
# # if(st.session_state.input_copali_rerank):
# # copali.process_doc(request_)
# # else:
# rag_DocumentLoader.load_docs(request_)
# print('lambda done')
# st.success('you can start searching on your PDF')
############## haystach demo temporary addition ############
# st.subheader(":blue[Multimodality]")
# colu1,colu2 = st.columns([50,50])
# with colu1:
# in_images = st.toggle('Images', key = 'in_images', disabled = False)
# with colu2:
# in_tables = st.toggle('Tables', key = 'in_tables', disabled = False)
# if(in_tables):
# st.session_state.input_table_with_sql = True
# else:
# st.session_state.input_table_with_sql = False
############## haystach demo temporary addition ############
#if(pdf_doc_ is None or pdf_doc_ == ""):
if(index_select == "Global Warming stats"):
st.session_state.input_index = "globalwarming"
if(index_select == "Covid19 impacts on Ireland"):
st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog"
if(index_select == "BEIR"):
st.session_state.input_index = "2104"
if(index_select == "UK Housing"):
st.session_state.input_index = "hpijan2024hometrack"
# custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "")
# if(custom_index!=""):
# st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower())
st.subheader(":blue[Retriever]")
search_type = st.multiselect('Select the Retriever(s)',
['Keyword Search',
'Vector Search',
'Sparse Search',
],
['Vector Search'],
key = 'input_rag_searchType',
help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)"
)
re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model")
if(re_rank):
st.session_state.input_is_rerank = True
else:
st.session_state.input_is_rerank = False
st.subheader(":blue[Multi-vector retrieval]")
colpali_search_rerank = st.checkbox('Try Colpali multi-vector retrieval on the [sample dataset](https://huggingface.co/datasets/vespa-engine/gpfg-QA)', key = 'input_colpali', disabled = False, value = False, help = "Checking this box will use colpali as the embedding model and retrieval is performed using multi-vectors followed by re-ranking using MaxSim")
if(colpali_search_rerank):
st.session_state.input_is_colpali = True
#st.session_state.input_query = ""
else:
st.session_state.input_is_colpali = False
with st.expander("Sample questions for Colpali retriever:"):
st.write("1. Proportion of female new hires 2021-2023? \n\n 2. First-half 2021 return on unlisted real estate investments? \n\n 3. Trend of the fund's expected absolute volatility between January 2014 and January 2016? \n\n 4. Fund return percentage in 2017? \n\n 5. Annualized gross return of the fund from 1997 to 2008?")
sidebar_controls()
|