Spaces:
Running
on
T4
Running
on
T4
File size: 12,105 Bytes
991493a 10cea74 991493a bc2fefa 991493a dac1d4e 991493a dac1d4e 991493a 485568d 991493a bd73012 991493a 485568d 991493a 10cea74 991493a bc2fefa 991493a bc2fefa 991493a bc2fefa c77dc87 bc2fefa 991493a bc2fefa 991493a 5cd2735 e3dc4f2 5cd2735 e3dc4f2 5cd2735 621eb63 5cd2735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import json
import random
import pprint
import os
from io import BytesIO
import glob
from pathlib import Path
from typing import Optional, cast
import numpy as np
#from datasets import load_dataset
import json
import boto3
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
from requests.auth import HTTPBasicAuth
from requests_aws4auth import AWS4Auth
import matplotlib.pyplot as plt
import requests
import boto3
import streamlit as st
import base64
from colpali_engine.interpretability import (
get_similarity_maps_from_embeddings,
plot_all_similarity_maps,
plot_similarity_map,
)
import torch
# from colpali_engine.models import ColPali, ColPaliProcessor
# from colpali_engine.utils.torch_utils import get_torch_device
from PIL import Image
import utilities.invoke_models as invoke_models
model_name = (
"vidore/colpali-v1.3"
)
# colpali_model = ColPali.from_pretrained(
# model_name,
# torch_dtype=torch.bfloat16,
# device_map="cuda:0", # Use "cuda:0" for GPU, "cpu" for CPU, or "mps" for Apple Silicon
# ).eval()
# colpali_processor = ColPaliProcessor.from_pretrained(
# model_name
# )
awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
headers = {"Content-Type": "application/json"}
aos_client = OpenSearch(
hosts = [{'host': 'search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com', 'port': 443}],
http_auth = awsauth,
use_ssl = True,
verify_certs = True,
connection_class = RequestsHttpConnection,
pool_maxsize = 20
)
region_endpoint = "us-east-1"
# Your SageMaker endpoint name
endpoint_name = "colpali-endpoint"
# Create a SageMaker runtime client
runtime = boto3.client("sagemaker-runtime",aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name=region_endpoint)
# Prepare your payload (e.g., text-only input)
if 'top_img' not in st.session_state:
st.session_state['top_img'] = ""
if 'query_token_vectors' not in st.session_state:
st.session_state['query_token_vectors'] = ""
if 'query_tokens' not in st.session_state:
st.session_state['query_tokens'] = ""
def call_nova(
model,
messages,
system_message="",
streaming=False,
max_tokens=512,
temp=0.0001,
top_p=0.99,
top_k=20,
tools=None,
verbose=False,
):
client = boto3.client('bedrock-runtime',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = region_endpoint)
system_list = [{"text": system_message}]
inf_params = {
"max_new_tokens": max_tokens,
"top_p": top_p,
"top_k": top_k,
"temperature": temp,
}
request_body = {
"messages": messages,
"system": system_list,
"inferenceConfig": inf_params,
}
if tools is not None:
tool_config = []
for tool in tools:
tool_config.append({"toolSpec": tool})
request_body["toolConfig"] = {"tools": tool_config}
if verbose:
print("Request Body", request_body)
if not streaming:
response = client.invoke_model(modelId=model, body=json.dumps(request_body))
model_response = json.loads(response["body"].read())
return model_response, model_response["output"]["message"]["content"][0]["text"]
else:
response = client.invoke_model_with_response_stream(
modelId=model, body=json.dumps(request_body)
)
return response["body"]
def get_base64_encoded_value(media_path):
with open(media_path, "rb") as media_file:
binary_data = media_file.read()
base_64_encoded_data = base64.b64encode(binary_data)
base64_string = base_64_encoded_data.decode("utf-8")
return base64_string
def generate_ans(top_result,query):
print(query)
system_message = "given an image of a PDF page, answer the question. Be accurate to the question. If you don't find the answer in the page, please say, I don't know"
messages = [
{
"role": "user",
"content": [
{
"image": {
"format": "jpeg",
"source": {
"bytes": get_base64_encoded_value(
top_result
)
},
}
},
{
"text": query#"what is the proportion of female new hires 2021-2023?"
},
],
}
]
model_response, content_text = call_nova(
"amazon.nova-pro-v1:0", messages, system_message=system_message, max_tokens=300
)
print(content_text)
return content_text
def img_highlight(img,batch_queries,query_tokens):
img_name = os.path.basename(img) # e.g., "my_image.png"
# Construct the search pattern
search_pattern = f"/home/user/app/similarity_maps/similarity_map_{img_name}_token_*"
# Search for matching files
matching_files = glob.glob(search_pattern)
# Check if any match exists
map_images = []
if matching_files:
print("✅ Matching similarity map exists:")
for file_path in matching_files:
print(f" - {file_path}")
map_images.append({'file':file_path})
return map_images
# Reference from : https://github.com/tonywu71/colpali-cookbooks/blob/main/examples/gen_colpali_similarity_maps.ipynb
with open(img, "rb") as f:
img_b64 = base64.b64encode(f.read()).decode("utf-8")
# Construct payload with only the image
payload = {
"images": [img_b64]
}
# Send to endpoint
response = runtime.invoke_endpoint(
EndpointName=endpoint_name, # your endpoint name
ContentType="application/json",
Body=json.dumps(payload)
)
# Read response
img_colpali_res = (json.loads(response["Body"].read().decode()))
# Convert outputs to tensors
image_embeddings = torch.tensor(img_colpali_res["image_embeddings"][0]) # shape: [B, T, D] or [T, D]
query_embeddings = torch.tensor(batch_queries) # shape: [B, D]
# Ensure you're accessing the full 1D mask vector, not a single value
image_mask_list = img_colpali_res["image_mask"]
if isinstance(image_mask_list[0], list):
# Correct: list of lists
image_mask = torch.tensor(image_mask_list[0]).bool()
else:
# Edge case: already flattened
image_mask = torch.tensor(image_mask_list).bool()
print("Valid patch count:", image_mask.sum().item()) # shape: [B, T] or [T]
# Ensure 2D query_embeddings
if query_embeddings.dim() == 2:
query_embeddings = query_embeddings.unsqueeze(0)
# Ensure image_embeddings and image_mask are batched
if image_embeddings.dim() == 2:
image_embeddings = image_embeddings.unsqueeze(0) # [1, T, D]
if image_mask.dim() == 1:
image_mask = image_mask.unsqueeze(0)
print("query_embeddings shape:", query_embeddings.shape)
print("image_embeddings shape:", image_embeddings.shape)
print("image_mask shape:", image_mask.shape)
# Get the number of image patches
image = Image.open(img)
n_patches = (img_colpali_res["patch_shape"]['height'],img_colpali_res["patch_shape"]['width'])
print(f"Number of image patches: {n_patches}")
# # Generate the similarity maps
batched_similarity_maps = get_similarity_maps_from_embeddings(
image_embeddings=image_embeddings,
query_embeddings=query_embeddings,
n_patches=n_patches,
image_mask = image_mask
)
# # Get the similarity map for our (only) input image
similarity_maps = batched_similarity_maps[0] # (query_length, n_patches_x, n_patches_y)
query_tokens_from_model = query_tokens[0]['tokens']
plots = plot_all_similarity_maps(
image=image,
query_tokens=query_tokens_from_model,
similarity_maps=similarity_maps,
figsize=(8, 8),
show_colorbar=False,
add_title=True,
)
map_images = []
for idx, (fig, ax) in enumerate(plots):
if(idx<3):
continue
savepath = "/home/user/app/similarity_maps/similarity_map_"+(img.split("/"))[-1]+"_token_"+str(idx)+"_"+query_tokens_from_model[idx]+".png"
fig.savefig(savepath, bbox_inches="tight")
map_images.append({'file':savepath})
print(f"Similarity map for token `{query_tokens_from_model[idx]}` saved at `{savepath}`")
plt.close("all")
return map_images
def colpali_search_rerank(query):
if(st.session_state.show_columns == True):
print("show columns activated------------------------")
st.session_state.maxSimImages = img_highlight(st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens)
st.session_state.show_columns = False
return_val = {'text':st.session_state.answers_[0]['answer'],'source':st.session_state.answers_[0]['source'],'image':st.session_state.maxSimImages,'table':[]}
st.session_state.input_query = st.session_state.questions_[-1]["question"]
st.session_state.answers_.pop()
st.session_state.questions_.pop()
return return_val
# Convert to JSON string
payload = {
"queries": [query]
}
body = json.dumps(payload)
# Call the endpoint
response = runtime.invoke_endpoint(
EndpointName=endpoint_name,
ContentType="application/json",
Body=body
)
# Read and print the response
result = json.loads(response["Body"].read().decode())
#print(len(result['query_embeddings'][0]))
final_docs_sorted_20 = []
for i in result['query_embeddings']:
batch_embeddings = i
a = np.array(batch_embeddings)
vec = a.mean(axis=0)
#print(vec)
hits = []
#for v in batch_embeddings:
query_ = {
"size": 200,
"query": {
"nested": {
"path": "page_sub_vectors",
"query": {
"knn": {
"page_sub_vectors.page_sub_vector": {
"vector": vec.tolist(),
"k": 200
}
}
}
}
}
}
response = aos_client.search(
body = query_,
index = 'colpali-vs-reindex'
)
#print(response)
query_token_vectors = batch_embeddings
final_docs = []
hits += response['hits']['hits']
#print(len(hits))
for ind,j in enumerate(hits):
max_score_dict_list = []
doc={"id":j["_id"],"score":j["_score"],"image":j["_source"]["image"]}
with_s = j['_source']['page_sub_vectors']
add_score = 0
for index,i in enumerate(query_token_vectors):
query_token_vector = np.array(i)
scores = []
for m in with_s:
doc_token_vector = np.array(m['page_sub_vector'])
score = np.dot(query_token_vector,doc_token_vector)
scores.append(score)
scores.sort(reverse=True)
max_score = scores[0]
add_score+=max_score
doc["total_score"] = add_score
final_docs.append(doc)
final_docs_sorted = sorted(final_docs, key=lambda d: d['total_score'], reverse=True)
final_docs_sorted_20.append(final_docs_sorted[:20])
img = "/home/user/app/vs/"+final_docs_sorted_20[0][0]['image']
ans = generate_ans(img,query)
images_highlighted = [{'file':img}]
st.session_state.top_img = img
st.session_state.query_token_vectors = query_token_vectors
st.session_state.query_tokens = result['query_tokens']
return {'text':ans,'source':img,'image':images_highlighted,'table':[]}#[{'file':img}]
|