Spaces:
Running
on
T4
Running
on
T4
File size: 8,786 Bytes
2e2dda5 2034f95 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 72c9086 2e2dda5 eb03410 2e2dda5 72c9086 2e2dda5 72c9086 2e2dda5 72c9086 2e2dda5 72c9086 eb03410 2e2dda5 72c9086 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 c90d53e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import streamlit as st
import uuid
import os
import re
import sys
import uuid
from io import BytesIO
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities")
import boto3
import requests
from boto3 import Session
import botocore.session
import json
import random
import string
# import rag_DocumentLoader
# import rag_DocumentSearcher
import pandas as pd
from PIL import Image
import shutil
import base64
import time
import botocore
#from langchain.callbacks.base import BaseCallbackHandler
#import streamlit_nested_layout
#from IPython.display import clear_output, display, display_markdown, Markdown
from requests_aws4auth import AWS4Auth
#import copali
from requests.auth import HTTPBasicAuth
import bedrock_agent
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
st.set_page_config(
layout="wide",
page_icon="images/opensearch_mark_default.png"
)
parent_dirname = '/home/ubuntu/AI-search-with-amazon-opensearch-service/OpenSearchApp'
USER_ICON = "images/user.png"
AI_ICON = "images/opensearch-twitter-card.png"
REGENERATE_ICON = "images/regenerate.png"
s3_bucket_ = "pdf-repo-uploads"
polly_client = boto3.Session(
region_name='us-east-1').client('polly')
# Check if the user ID is already stored in the session state
if 'user_id' in st.session_state:
user_id = st.session_state['user_id']
# If the user ID is not yet stored in the session state, generate a random UUID
else:
user_id = str(uuid.uuid4())
st.session_state['user_id'] = user_id
if 'session_id_' not in st.session_state:
st.session_state['session_id_'] = str(uuid.uuid1())
if "chats" not in st.session_state:
st.session_state.chats = [
{
'id': 0,
'question': '',
'answer': ''
}
]
if "questions__" not in st.session_state:
st.session_state.questions__ = []
if "answers__" not in st.session_state:
st.session_state.answers__ = []
if "input_is_rerank" not in st.session_state:
st.session_state.input_is_rerank = True
if "input_copali_rerank" not in st.session_state:
st.session_state.input_copali_rerank = False
if "input_table_with_sql" not in st.session_state:
st.session_state.input_table_with_sql = False
if "inputs_" not in st.session_state:
st.session_state.inputs_ = {}
if "input_shopping_query" not in st.session_state:
st.session_state.input_shopping_query="get me shoes suitable for trekking"
if "input_rag_searchType" not in st.session_state:
st.session_state.input_rag_searchType = ["Sparse Search"]
region = 'us-east-1'
output = []
service = 'es'
st.markdown("""
<style>
[data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{
gap: 0rem;
}
[data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{
gap: 0rem;
}
</style>
""",unsafe_allow_html=True)
def write_logo():
col1, col2, col3 = st.columns([5, 1, 5])
with col2:
st.image(AI_ICON, use_column_width='always')
def write_top_bar():
col1, col2 = st.columns([77,23])
with col1:
st.page_link("app.py", label=":orange[Home]", icon="🏠")
st.header("AI Shopping assistant",divider='rainbow')
with col2:
st.write("")
st.write("")
clear = st.button("Clear")
st.write("")
st.write("")
return clear
clear = write_top_bar()
if clear:
st.session_state.questions__ = []
st.session_state.answers__ = []
st.session_state.input_shopping_query=""
st.session_state.session_id_ = str(uuid.uuid1())
bedrock_agent.delete_memory()
def handle_input():
if(st.session_state.input_shopping_query==''):
return ""
inputs = {}
for key in st.session_state:
if key.startswith('input_'):
inputs[key.removeprefix('input_')] = st.session_state[key]
st.session_state.inputs_ = inputs
question_with_id = {
'question': inputs["shopping_query"],
'id': len(st.session_state.questions__)
}
st.session_state.questions__.append(question_with_id)
print(inputs)
out_ = bedrock_agent.query_(inputs)
st.session_state.answers__.append({
'answer': out_['text'],
'source':out_['source'],
'last_tool':out_['last_tool'],
'id': len(st.session_state.questions__)
})
st.session_state.input_shopping_query=""
def write_user_message(md):
col1, col2 = st.columns([3,97])
with col1:
st.image(USER_ICON, use_column_width='always')
with col2:
st.markdown("<div style='color:#e28743';font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;'>"+md['question']+"</div>", unsafe_allow_html = True)
def render_answer(question,answer,index):
col1, col2, col_3 = st.columns([4,74,22])
with col1:
st.image(AI_ICON, use_column_width='always')
with col2:
use_interim_results = False
src_dict = {}
ans_ = answer['answer']
span_ans = ans_.replace('<question>',"<span style='fontSize:18px;color:#f37709;fontStyle:italic;'>").replace("</question>","</span>")
st.markdown("<p>"+span_ans+"</p>",unsafe_allow_html = True)
if(answer['last_tool']['name'] in ["generate_images","get_relevant_items_for_image","get_relevant_items_for_text","retrieve_with_hybrid_search","retrieve_with_keyword_search","get_any_general_recommendation"]):
use_interim_results = True
src_dict =json.loads(answer['last_tool']['response'].replace("'",'"'))
if(use_interim_results and answer['last_tool']['name']!= 'generate_images' and answer['last_tool']['name']!= 'get_any_general_recommendation'):
key_ = answer['last_tool']['name']
st.write("<br><br>",unsafe_allow_html = True)
img_col1, img_col2, img_col3 = st.columns([30,30,40])
for index,item in enumerate(src_dict[key_]):
response_ = requests.get(item['image'])
img = Image.open(BytesIO(response_.content))
resizedImg = img.resize((230, 180), Image.Resampling.LANCZOS)
if(index ==0):
with img_col1:
st.image(resizedImg,use_column_width = True,caption = item['title'])
if(index ==1):
with img_col2:
st.image(resizedImg,use_column_width = True,caption = item['title'])
if(answer['last_tool']['name'] == "generate_images" or answer['last_tool']['name'] == "get_any_general_recommendation"):
st.write("<br>",unsafe_allow_html = True)
gen_img_col1, gen_img_col2,gen_img_col2 = st.columns([30,30,30])
res = src_dict['generate_images'].replace('s3://','')
s3_ = boto3.resource('s3',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
key = res.split('/')[1]
s3_stream = s3_.Object("bedrock-video-generation-us-east-1-lbxkrh", key).get()['Body'].read()
img_ = Image.open(BytesIO(s3_stream))
resizedImg = img_.resize((230, 180), Image.Resampling.LANCZOS)
with gen_img_col1:
st.image(resizedImg,caption = "Generated image for "+key.split(".")[0],use_column_width = True)
st.write("<br>",unsafe_allow_html = True)
colu1,colu2,colu3 = st.columns([4,82,20])
if(answer['source']!={}):
with colu2:
with st.expander("Agent Traces:"):
st.write(answer['source'])
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question
def write_chat_message(md, q,index):
chat = st.container()
with chat:
render_answer(q,md,index)
def render_all():
index = 0
for (q, a) in zip(st.session_state.questions__, st.session_state.answers__):
index = index +1
write_user_message(q)
write_chat_message(a, q,index)
placeholder = st.empty()
with placeholder.container():
render_all()
st.markdown("")
col_2, col_3 = st.columns([75,20])
with col_2:
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_shopping_query")
with col_3:
play = st.button("Go",on_click=handle_input,key = "play")
|