Spaces:
Running
on
T4
Running
on
T4
File size: 14,434 Bytes
2e2dda5 f725bfe 2e2dda5 475a4b0 2e2dda5 48ccdfb 2e2dda5 48ccdfb 2e2dda5 475a4b0 2e2dda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import json
import os
import sys
import boto3
import amazon_rekognition
from botocore.config import Config
import getpass
#from nltk.stem import PorterStemmer
#from nltk.tokenize import word_tokenize
import os
import streamlit as st
from langchain.schema import Document
#from langchain_community.vectorstores import OpenSearchVectorSearch,ElasticsearchStore
from requests_aws4auth import AWS4Auth
from requests.auth import HTTPBasicAuth
from langchain.chains.query_constructor.base import (
StructuredQueryOutputParser,
get_query_constructor_prompt,
)
from langchain.retrievers.self_query.opensearch import OpenSearchTranslator
from langchain.chains import ConversationChain
from langchain.llms.bedrock import Bedrock
from langchain.memory import ConversationBufferMemory
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_core.prompts.few_shot import FewShotPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain.embeddings import BedrockEmbeddings
#from langchain.vectorstores import OpenSearchVectorSearch
from opensearchpy import OpenSearch, RequestsHttpConnection
import utilities.invoke_models as invoke_models
bedrock_params = {
"max_tokens_to_sample":2048,
"temperature":0.0001,
"top_k":250,
"top_p":1,
"stop_sequences":["\\n\\nHuman:"]
}
bedrock_region="us-east-1"
#boto3_bedrock = boto3.client(service_name="bedrock-runtime", endpoint_url=f"https://bedrock-runtime.{bedrock_region}.amazonaws.com")
boto3_bedrock = boto3.client(service_name="bedrock-runtime", config=Config(region_name=bedrock_region))
bedrock_titan_llm = Bedrock(model_id="anthropic.claude-instant-v1", client=boto3_bedrock)
bedrock_titan_llm.model_kwargs = bedrock_params
bedrock_embeddings = BedrockEmbeddings(model_id='amazon.titan-embed-text-v1',client=boto3_bedrock)
schema = """{{
"content": "Brief summary of a retail product",
"attributes": {{
"category": {{
"description": "The category of the product, the available categories are apparel, footwear, outdoors, electronics, beauty, jewelry, accessories, housewares, homedecor, furniture, seasonal, floral, books, groceries, instruments, tools, hot dispensed, cold dispensed, food service and salty snacks",
"type": "string"
}},
"gender_affinity": {{
"description": "The gender that the product relates to, the choices are Male and Female",
"type": "string"
}},
"price": {{
"description": "Cost of the product",
"type": "double"
}},
"description": {{
"description": "The detailed description of the product",
"type": "string"
}},
"color": {{
"description": "The color of the product",
"type": "string"
}},
"caption": {{
"description": "The short description of the product",
"type": "string"
}},
"current_stock": {{
"description": "The available quantity of the product in stock for sale",
"type": "integer"
}},
"style": {{
"description": "The style of the product",
"type": "string"
}}
}}
}}"""
metadata_field_info_ = [
AttributeInfo(
name="price",
description="Cost of the product",
type="string",
),
AttributeInfo(
name="style",
description="The style of the product",
type="string",
),
AttributeInfo(
name="category",
description="The category of the product, the available categories are apparel, footwear, outdoors, electronics, beauty, jewelry, accessories, housewares, homedecor, furniture, seasonal, floral, books, groceries, instruments, tools, hot dispensed, cold dispensed, food service and salty snacks",
type="string",
),
AttributeInfo(
name="current_stock",
description="The available quantity of the product",
type="string",
),
AttributeInfo(
name="gender_affinity",
description="The gender that the product relates to, the choices are Male and Female",
type="string"
),
AttributeInfo(
name="caption",
description="The short description of the product",
type="string"
),
AttributeInfo(
name="description",
description="The detailed description of the product",
type="string"
),
AttributeInfo(
name="color",
description="The color of the product",
type="string"
)
]
document_content_description_ = "Brief summary of a retail product"
# open_search_vector_store = OpenSearchVectorSearch(
# index_name="retail-ml-search-index",#"self-query-rewrite-retail",
# embedding_function=bedrock_embeddings,
# opensearch_url=os_domain_ep,
# http_auth=auth
# )
examples = [
{ "i":1,
"data_source": schema,
"user_query": "black shoes for men",
"structured_request": """{{
"query": "shoes",
"filter": "and(eq(\"color\", \"black\"), eq(\"category\", \"footwear\")), eq(\"gender_affinity\", \"Male\")"
}}""",
},
{ "i":2,
"data_source": schema,
"user_query": "black or brown jackets for men under 50 dollars",
"structured_request": """{{
"query": "jackets",
"filter": "and(eq(\"style\", \"jacket\"), or(eq(\"color\", \"brown\"),eq(\"color\", \"black\")),eq(\"category\", \"apparel\"),eq(\"gender_affinity\", \"male\"),lt(\"price\", \"50\"))"
}}""",
},
{ "i":2,
"data_source": schema,
"user_query": "trendy handbags for women",
"structured_request": """{{
"query": "handbag",
"filter": "and(eq(\"style\", \"bag\") ,eq(\"category\", \"accessories\"),eq(\"gender_affinity\", \"female\"))"
}}""",
}
]
example_prompt = PromptTemplate(
input_variables=["question", "answer"], template="Question: {question}\n{answer}"
)
example_prompt=PromptTemplate(input_variables=['data_source', 'i', 'structured_request', 'user_query'],
template='<< Example {i}. >>\nData Source:\n{data_source}\n\nUser Query:\n{user_query}\n\nStructured Request:\n{structured_request}\n')
#print(example_prompt.format(**examples[0]))
prefix_ = """
Your goal is to structure the user's query to match the request schema provided below.
<< Structured Request Schema >>
When responding use a markdown code snippet with a JSON object formatted in the following schema:
```json
{{
"query": string \ text string to compare to document contents
"filter": string \ logical condition statement for filtering documents
}}
```
The query string should contain only text that is expected to match the contents of documents. Any conditions in the filter should not be mentioned in the query as well.
A logical condition statement is composed of one or more comparison and logical operation statements.
A comparison statement takes the form: `comp(attr, val)`:
- `comp` (eq | ne | gt | gte | lt | lte | contain | like | in | nin): comparator
- `attr` (string): name of attribute to apply the comparison to
- `val` (string): is the comparison value
A logical operation statement takes the form `op(statement1, statement2, ...)`:
- `op` (and | or | not): logical operator
- `statement1`, `statement2`, ... (comparison statements or logical operation statements): one or more statements to apply the operation to
Make sure that you only use the comparators and logical operators listed above and no others.
Make sure that filters only refer to attributes that exist in the data source.
Make sure that filters only use the attributed names with its function names if there are functions applied on them.
Make sure that filters only use format `YYYY-MM-DD` when handling date data typed values.
Make sure that filters take into account the descriptions of attributes and only make comparisons that are feasible given the type of data being stored.
Make sure that filters are only used as needed. If there are no filters that should be applied return "NO_FILTER" for the filter value.
"""
suffix_ = """<< Example 3. >>
Data Source:
{schema}
User Query:
{query}
Structured Request:
"""
prompt_ = FewShotPromptTemplate(
examples=examples,
example_prompt=example_prompt,
suffix=suffix_,
prefix=prefix_,
input_variables=["query","schema"],
)
# retriever = SelfQueryRetriever.from_llm(
# bedrock_titan_llm, open_search_vector_store, document_content_description_, metadata_field_info_, verbose=True
# )
# res = retriever.get_relevant_documents("bagpack for men")
# st.write(res)
######### use this for self query retriever ########
# prompt = get_query_constructor_prompt(
# document_content_description_,
# metadata_field_info_,
# )
# output_parser = StructuredQueryOutputParser.from_components()
# query_constructor = prompt | bedrock_titan_llm | output_parser
def get_new_query_res(query):
field_map = {'Price':'price','Gender':'gender_affinity','Category':'category','Style':'style','Color':'color'}
field_map_filter = {key: field_map[key] for key in st.session_state.input_must}
if(query == ""):
query = st.session_state.input_rekog_label
if(st.session_state.input_is_rewrite_query == 'enabled'):
res = invoke_models.invoke_llm_model( prompt_.format(query=query,schema = schema) ,False)
inter_query = res[7:-3].replace('\\"',"'").replace("\n","")
print("inter_query")
print(inter_query)
query_struct = StructuredQueryOutputParser.from_components().parse(inter_query)
print("query_struct")
print(query_struct)
opts = OpenSearchTranslator()
result_query_llm = opts.visit_structured_query(query_struct)[1]['filter']
print(result_query_llm)
draft_new_query = {'bool':{'should':[],'must':[]}}
if('bool' in result_query_llm and ('must' in result_query_llm['bool'] or 'should' in result_query_llm['bool'])):
#draft_new_query['bool']['should'] = []
if('must' in result_query_llm['bool']):
for q in result_query_llm['bool']['must']:
old_clause = list(q.keys())[0]
if(old_clause == 'term'):
new_clause = 'match'
else:
new_clause = old_clause
q_dash = {}
q_dash[new_clause] = {}
long_field = list(q[old_clause].keys())[0]
#print(long_field)
get_attr = long_field.split(".")[1]
#print(get_attr)
q_dash[new_clause][get_attr] = q[old_clause][long_field]
#print(q_dash)
if(get_attr in list(field_map_filter.values())):
draft_new_query['bool']['must'].append(q_dash)
else:
draft_new_query['bool']['should'].append(q_dash)
query_ = draft_new_query
###### find the main subject of the query
#imp_item = ""
# if("bool" in query_ and 'should' in query_['bool']):
# for i in query_['bool']['should']:
# if("term" in i.keys()):
# if("metadata.category.keyword" in i["term"]):
# imp_item = imp_item + i["term"]["metadata.category.keyword"]+ " "
# if("metadata.style.keyword" in i["term"]):
# imp_item = imp_item + i["term"]["metadata.style.keyword"]+ " "
# if("match" in i.keys()):
# if("metadata.category.keyword" in i["match"]):
# imp_item = imp_item + i["match"]["metadata.category.keyword"]+ " "
# if("metadata.style.keyword" in i["match"]):
# imp_item = imp_item + i["match"]["metadata.style.keyword"]+ " "
# else:
# if("term" in query_):
# if("metadata.category.keyword" in query_):
# imp_item = imp_item + query_["metadata.category.keyword"] + " "
# if("metadata.style.keyword" in query_):
# imp_item = imp_item + query_["metadata.style.keyword"]+ " "
# if("match" in query_):
# if("metadata.category.keyword" in query_):
# imp_item = imp_item + query_["metadata.category.keyword"]+ " "
# if("metadata.style.keyword" in query_):
# imp_item = imp_item + query_["metadata.style.keyword"]+ " "
###### find the main subject of the query
imp_item = (opts.visit_structured_query(query_struct)[0]).replace(",","")
if(imp_item == ""):
imp_item = query
#ps = PorterStemmer()
# def stem_(sentence):
# words = word_tokenize(sentence)
# words_stem = ""
# for w in words:
# words_stem = words_stem +" "+ps.stem(w)
# return words_stem.strip()
#imp_item = stem_(imp_item)
print("imp_item---------------")
print(imp_item)
print(query_)
if('must' in query_['bool']):
query_['bool']['must'].append({
"simple_query_string": {
"query": imp_item.strip(),
"fields":['description',"style","caption"]#'rekog_all^3'
}
#"match":{"description":imp_item.strip()}
})
else:
query_['bool']['must']={
"multi_match": {
"query": imp_item.strip(),
"fields":['description',"style"]#'rekog_all^3'
}
#"match":{"description":imp_item.strip()}
}
#query_['bool']["minimum_should_match"] = 1
st.session_state.input_rewritten_query = {"query":query_}
print(st.session_state.input_rewritten_query)
|