OpenSearch-AI / RAG /bedrock_agent.py
prasadnu's picture
ubi integration for agent
4df48e4
raw
history blame
6.45 kB
import boto3
import json
import time
import zipfile
from io import BytesIO
import uuid
import pprint
import logging
from PIL import Image
import os
import base64
import re
import requests
#import utilities.re_ranker as re_ranker
import utilities.invoke_models as invoke_models
import streamlit as st
import time as t
import botocore.exceptions
from datetime import datetime, timezone
import botocore
import utilities.ubi_lambda as ubi
if "inputs_" not in st.session_state:
st.session_state.inputs_ = {}
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
region = 'us-east-1'
# setting logger
logging.basicConfig(format='[%(asctime)s] p%(process)s {%(filename)s:%(lineno)d} %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
# getting boto3 clients for required AWS services
#bedrock_agent_client = boto3.client('bedrock-agent',region_name=region)
bedrock_agent_runtime_client = boto3.client(
'bedrock-agent-runtime',
aws_access_key_id=st.secrets['user_access_key_us_west_2'],
aws_secret_access_key=st.secrets['user_secret_key_us_west_2'], region_name = 'us-west-2'
)
enable_trace:bool = True
end_session:bool = False
def now_rfc3339():
return datetime.now(timezone.utc).isoformat()
def send_otel_span(span):
try:
query_payload = {
"client_id": session_id,
"query_id": st.session_state["query_id"],
"application": "Semantic Search",
"query_response_hit_ids": doc_ids,
"timestamp": datetime.utcnow().isoformat() + "Z",
"user_query": json.dumps(hybrid_payload),
"query": query,
}
status = ubi.send_to_lambda(".otel-v1-apm-span-default", span)
if status == 202:
print("Traces sent to Lambda")
else:
print("Lambda did not accept the request")
res = requests.post(OPENSEARCH_ENDPOINT, json=span, auth=OPENSEARCH_AUTH, timeout=3)
print(f"[OTEL SPAN] {span['name']} -> {res.status_code}")
except Exception as e:
print(f"[OTEL ERROR] {e}")
def convert_to_span(block, trace_id, index):
span_id = str(uuid.uuid4()).replace("-", "")[:16]
name = "step"
attributes = {}
if "invocationInput" in block:
name = block["invocationInput"].get("function", "invocation")
attributes = {p["name"]: p["value"] for p in block["invocationInput"].get("parameters", [])}
elif "observation" in block:
name = block["observation"].get("type", "observation").lower()
attributes = block["observation"].get("actionGroupInvocationOutput", {})
elif "thinking" in block:
name = "thinking"
attributes["message"] = block["thinking"].get("content", "")
elif "rationale" in block:
name = "rationale"
attributes["message"] = block["rationale"]
return {
"traceId": trace_id,
"spanId": span_id,
"name": name,
"startTime": now_rfc3339(),
"endTime": now_rfc3339(),
"durationInNanos": 10000000 * (index + 1),
"kind": "INTERNAL",
"status": {"code": "OK"},
"attributes": attributes,
"resource": {
"service.name": "bedrock-agent"
}
}
def delete_memory():
response = bedrock_agent_runtime_client.delete_agent_memory(
agentAliasId='DEEEEZM2TM',
agentId='EJVGQW1BH7'
)
def query_(inputs):
# invoke the agent API
agentResponse = bedrock_agent_runtime_client.invoke_agent(
inputText=inputs['shopping_query'],
agentId='EJVGQW1BH7',
agentAliasId='DEEEEZM2TM',
sessionId=st.session_state.session_id_,
enableTrace=enable_trace,
endSession= end_session
)
logger.info(pprint.pprint(agentResponse))
#print("***agent*****response*********")
#print(agentResponse)
event_stream = agentResponse['completion']
total_context = []
last_tool = ""
last_tool_name = ""
agent_answer = ""
trace_id = str(uuid.uuid4()).replace("-", "")
try:
for i,event in enumerate(event_stream):
if 'trace' in event:
if('orchestrationTrace' not in event['trace']['trace']):
continue
orchestration_trace = event['trace']['trace']['orchestrationTrace']
total_context_item = {}
if('modelInvocationOutput' in orchestration_trace and '<tool_name>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
total_context_item['tool'] = orchestration_trace['modelInvocationOutput']['rawResponse']
if('rationale' in orchestration_trace):
total_context_item['rationale'] = orchestration_trace['rationale']['text']
if('invocationInput' in orchestration_trace):
total_context_item['invocationInput'] = orchestration_trace['invocationInput']['actionGroupInvocationInput']
last_tool_name = total_context_item['invocationInput']['function']
if('observation' in orchestration_trace):
total_context_item['observation'] = event['trace']['trace']['orchestrationTrace']['observation']
tool_output_last_obs = event['trace']['trace']['orchestrationTrace']['observation']
if(tool_output_last_obs['type'] == 'ACTION_GROUP'):
last_tool = tool_output_last_obs['actionGroupInvocationOutput']['text']
if(tool_output_last_obs['type'] == 'FINISH'):
agent_answer = tool_output_last_obs['finalResponse']['text']
if('modelInvocationOutput' in orchestration_trace and '<thinking>' in orchestration_trace['modelInvocationOutput']['rawResponse']['content']):
total_context_item['thinking'] = orchestration_trace['modelInvocationOutput']['rawResponse']
if(total_context_item!={}):
total_context.append(total_context_item)
# 🔁 Generate + send OpenTelemetry span for each block
span = convert_to_span(total_context_item, trace_id, i)
send_otel_span(span)
except botocore.exceptions.EventStreamError as error:
raise error
return {'text':agent_answer,'source':total_context,'last_tool':{'name':last_tool_name,'response':last_tool}}