Spaces:
Running
on
T4
Running
on
T4
import boto3 | |
import json | |
import os | |
import shutil | |
from unstructured.partition.pdf import partition_pdf | |
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth | |
import streamlit as st | |
from PIL import Image | |
import base64 | |
import re | |
#from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
import base64 | |
import requests | |
import utilities.re_ranker as re_ranker | |
import utilities.invoke_models as invoke_models | |
#import langchain | |
headers = {"Content-Type": "application/json"} | |
host = "https://search-opensearchservi-75ucark0bqob-bzk6r6h2t33dlnpgx2pdeg22gi.us-east-1.es.amazonaws.com/" | |
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1]) | |
def query_(awsauth,inputs, session_id,search_types): | |
print("using index: "+st.session_state.input_index) | |
question = inputs['query'] | |
k=1 | |
embedding = invoke_models.invoke_model_mm(question,"none") | |
query_mm = { | |
"size": k, | |
"_source": { | |
"exclude": [ | |
"processed_element_embedding_bedrock-multimodal","processed_element_embedding_sparse","image_encoding","processed_element_embedding" | |
] | |
}, | |
"query": { | |
"knn": { | |
"processed_element_embedding_bedrock-multimodal": { | |
"vector": embedding, | |
"k": k} | |
} | |
} | |
} | |
path = st.session_state.input_index+"_mm/_search" | |
url = host+path | |
r = requests.get(url, auth=awsauth, json=query_mm, headers=headers) | |
response_mm = json.loads(r.text) | |
# response_mm = ospy_client.search( | |
# body = query_mm, | |
# index = st.session_state.input_index+"_mm" | |
# ) | |
hits = response_mm['hits']['hits'] | |
context = [] | |
context_tables = [] | |
images = [] | |
for hit in hits: | |
#context.append(hit['_source']['caption']) | |
images.append({'file':hit['_source']['image'],'caption':hit['_source']['processed_element']}) | |
####### SEARCH ######## | |
path = "_search/pipeline/rag-search-pipeline" | |
url = host + path | |
num_queries = len(search_types) | |
weights = [] | |
searches = ['Keyword','Vector','NeuralSparse'] | |
equal_weight = (int(100/num_queries) )/100 | |
if(num_queries>1): | |
for index,search in enumerate(search_types): | |
if(index != (num_queries-1)): | |
weight = equal_weight | |
else: | |
weight = 1-sum(weights) | |
weights.append(weight) | |
#print(weights) | |
s_pipeline_payload = { | |
"description": "Post processor for hybrid search", | |
"phase_results_processors": [ | |
{ | |
"normalization-processor": { | |
"normalization": { | |
"technique": "min_max" | |
}, | |
"combination": { | |
"technique": "arithmetic_mean", | |
"parameters": { | |
"weights": weights | |
} | |
} | |
} | |
} | |
] | |
} | |
r = requests.put(url, auth=awsauth, json=s_pipeline_payload, headers=headers) | |
#print(r.status_code) | |
#print(r.text) | |
SIZE = 5 | |
hybrid_payload = { | |
"_source": { | |
"exclude": [ | |
"processed_element_embedding","processed_element_embedding_sparse" | |
] | |
}, | |
"query": { | |
"hybrid": { | |
"queries": [ | |
#1. keyword query | |
#2. vector search query | |
#3. Sparse query | |
] | |
} | |
},"size":SIZE, | |
} | |
if('Keyword Search' in search_types): | |
keyword_payload = { | |
"match": { | |
"processed_element": { | |
"query": question | |
} | |
} | |
} | |
hybrid_payload["query"]["hybrid"]["queries"].append(keyword_payload) | |
if('Vector Search' in search_types): | |
embedding = embedding = invoke_models.invoke_model(question) | |
vector_payload = { | |
"knn": { | |
"processed_element_embedding": { | |
"vector": embedding, | |
"k": 2} | |
} | |
} | |
hybrid_payload["query"]["hybrid"]["queries"].append(vector_payload) | |
if('Sparse Search' in search_types): | |
#print("text expansion is enabled") | |
sparse_payload = { "neural_sparse": { | |
"processed_element_embedding_sparse": { | |
"query_text": question, | |
"model_id": "srrJ-owBQhe1aB-khx2n" | |
} | |
}} | |
hybrid_payload["query"]["hybrid"]["queries"].append(sparse_payload) | |
# path2 = "_plugins/_ml/models/srrJ-owBQhe1aB-khx2n/_predict" | |
# url2 = host+path2 | |
# payload2 = { | |
# "parameters": { | |
# "inputs": question | |
# } | |
# } | |
# r2 = requests.post(url2, auth=awsauth, json=payload2, headers=headers) | |
# sparse_ = json.loads(r2.text) | |
# query_sparse = sparse_["inference_results"][0]["output"][0]["dataAsMap"]["response"][0] | |
# print("hybrid_payload") | |
# print("---------------") | |
#print(hybrid_payload) | |
hits = [] | |
if(num_queries>1): | |
path = st.session_state.input_index+"/_search?search_pipeline=rag-search-pipeline" | |
else: | |
path = st.session_state.input_index+"/_search" | |
url = host+path | |
if(len(hybrid_payload["query"]["hybrid"]["queries"])==1): | |
single_query = hybrid_payload["query"]["hybrid"]["queries"][0] | |
del hybrid_payload["query"]["hybrid"] | |
hybrid_payload["query"] = single_query | |
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers) | |
#print(r.status_code) | |
response_ = json.loads(r.text) | |
#print("-------------------------------------------------------------------") | |
#print(r.text) | |
hits = response_['hits']['hits'] | |
else: | |
r = requests.get(url, auth=awsauth, json=hybrid_payload, headers=headers) | |
#print(r.status_code) | |
response_ = json.loads(r.text) | |
#print("-------------------------------------------------------------------") | |
#print(response_) | |
hits = response_['hits']['hits'] | |
##### GET reference tables separately like *_mm index search for images ###### | |
def lazy_get_table(): | |
#print("Forcing table analysis") | |
table_ref = [] | |
any_table_exists = False | |
for fname in os.listdir(parent_dirname+"/split_pdf_csv"): | |
if fname.startswith(st.session_state.input_index): | |
any_table_exists = True | |
break | |
if(any_table_exists): | |
#################### Basic Match query ################# | |
# payload_tables = { | |
# "query": { | |
# "bool":{ | |
# "must":{"match": { | |
# "processed_element": question | |
# }}, | |
# "filter":{"term":{"raw_element_type": "table"}} | |
# }}} | |
#################### Neural Sparse query ################# | |
payload_tables = {"query":{"neural_sparse": { | |
"processed_element_embedding_sparse": { | |
"query_text": question, | |
"model_id": "srrJ-owBQhe1aB-khx2n" | |
} | |
} } } | |
r_ = requests.get(url, auth=awsauth, json=payload_tables, headers=headers) | |
r_tables = json.loads(r_.text) | |
for res_ in r_tables['hits']['hits']: | |
if(res_["_source"]['raw_element_type'] == 'table'): | |
table_ref.append({'name':res_["_source"]['table'],'text':res_["_source"]['processed_element']}) | |
if(len(table_ref) == 2): | |
break | |
return table_ref | |
########################### LLM Generation ######################## | |
prompt_template = """ | |
The following is a friendly conversation between a human and an AI. | |
The AI is talkative and provides lots of specific details from its context. | |
{context} | |
Instruction: Based on the above documents, provide a detailed answer for, {question}. Answer "don't know", | |
if not present in the context. | |
Solution:""" | |
idx = 0 | |
images_2 = [] | |
is_table_in_result = False | |
df = [] | |
for hit in hits[0:3]: | |
if(hit["_source"]["raw_element_type"] == 'table'): | |
#print("Need to analyse table") | |
is_table_in_result = True | |
table_res = invoke_models.read_from_table(hit["_source"]["table"],question) | |
df.append({'name':hit["_source"]["table"],'text':hit["_source"]["processed_element"]}) | |
context_tables.append(table_res+"\n\n"+hit["_source"]["processed_element"]) | |
else: | |
if(hit["_source"]["image"]!="None"): | |
with open(parent_dirname+'/figures/'+st.session_state.input_index+"/"+hit["_source"]["raw_element_type"].split("_")[1].replace(".jpg","")+"-resized.jpg", "rb") as read_img: | |
input_encoded = base64.b64encode(read_img.read()).decode("utf8") | |
context.append(invoke_models.generate_image_captions_llm(input_encoded,question)) | |
else: | |
context.append(hit["_source"]["processed_element"]) | |
if(hit["_source"]["image"]!="None"): | |
images_2.append({'file':hit["_source"]["image"],'caption':hit["_source"]["processed_element"]}) | |
idx = idx +1 | |
#images.append(hit['_source']['image']) | |
# if(is_table_in_result == False): | |
# df = lazy_get_table() | |
# print("forcefully selected top 2 tables") | |
# print(df) | |
# for pos,table in enumerate(df): | |
# table_res = invoke_models.read_from_table(table['name'],question) | |
# context_tables.append(table_res)#+"\n\n"+table['text'] | |
total_context = context_tables + context | |
####### Re-Rank ######## | |
#print("re-rank") | |
if(st.session_state.input_is_rerank == True and len(total_context)): | |
ques = [{"question":question}] | |
ans = [{"answer":total_context}] | |
total_context = re_ranker.re_rank('rag','Cross Encoder',"",ques, ans) | |
llm_prompt = prompt_template.format(context=total_context[0],question=question) | |
output = invoke_models.invoke_llm_model( "\n\nHuman: {input}\n\nAssistant:".format(input=llm_prompt) ,False) | |
#print(output) | |
if(len(images_2)==0): | |
images_2 = images | |
return {'text':output,'source':total_context,'image':images_2,'table':df} | |